
Agility 2017 Hands-on Lab Guide

F5 Programmability Training

https://github.com/f5devcentral/f5-automation-labs/graphs/contributors

2

Contents:

1 Welcome 5

2 Class 1: Introduction to Automation & Orchestration 7
2.1 Lab Environments & Topology . 7
2.2 BIG-IP Basics (optional) . 18
2.3 Module 1: Imperative Automation with the BIG-IP iControl REST API 18
2.4 Module 2: Abstracting Services using iApp Templates . 61
2.5 Module 3: Creating Declarative Service Interfaces with iWorkflow 85
2.6 Conclusion . 112

3 Class 2: Building Continuous Delivery Pipelines 115
3.1 Module 1: f5-super-netops-container Toolkit . 115
3.2 Module 2: F5 f5-postman-workflows & f5-newman-wrapper 124
3.3 Module 3: Stitching Workflows from Class 1 into new Orchestratable Collections 150
3.4 Module 4: Continuous Integration / Continuous Delivery . 166

4 Class 3: Introduction to SecDevOps 185
4.1 Lab Topology . 186
4.2 Module 1: iControl REST API Refresher . 186
4.3 Module 2: Programmatic Control of Firewall Services . 199
4.4 Module 3: Programmatic Control of Web Application Firewall Services 214

5 HOWTOs: Index 243
5.1 HOWTO - Update Existing iApp templates to Work with iWorkflow v2.1 243

6 Appendices 245
6.1 Appendix A: Python SDK . 245

3

4

1
Welcome

Welcome to F5’s Automation, Orchestration and Programmability Training series. The intended audience for
these labs are Super NetOps and DevOps engineers that would like to leverage the various programmability
tools offered by the F5 platform. If you require a pre-built lab environment please contact your F5 account
team and they can provide access to environments on an as-needed basis.

The content contained here adheres to a DevOps methodology and automation pipeline. All content con-
tained here is sourced from the following GitHub repository:

https://github.com/f5devcentral/f5-automation-labs/

Bugs and Requests for enhancements are handled in two ways:

• Fork the Github Repo, fix or enhance as required and submit a Pull Request

– https://help.github.com/articles/creating-a-pull-request-from-a-fork/

• Open an Issue within the repository.

5

https://github.com/f5devcentral/f5-automation-labs/
https://help.github.com/articles/creating-a-pull-request-from-a-fork/
https://github.com/f5devcentral/f5-automation-labs/issues

6

2
Class 1: Introduction to Automation & Orchestration

This introductory class covers the following topics:

• Imperative Automation using the F5 BIG-IP iControl REST API

• Service Abstraction and Automation using F5 iApp templates

• Building Declarative Interfaces with the F5 iWorkflow product

Expected time to complete: 4 hours

To continue please review the information about the Lab Environment. Additionally, if you are new to the F5
BIG-IP Platform we’ve created an overview in the BIG-IP Basics section.

2.1 Lab Environments & Topology

Note: All work for this lab will be performed exclusively from the Linux Jumphost. No installation or
interaction with your local system is required.

All pre-built environments implement the Lab Topology shown below. Please review the topology first, then
find the section matching the lab environment you are using for connection instructions.

2.1.1 Lab Topology

The network topology implemented for this lab is very simple. Since the focus of the lab is Control Plane
programmability rather than Data Plane traffic flow we can keep the data plane fairly simple. The following
components have been included in your lab environment:

• 2 x F5 BIG-IP VE (v12.1.x)

• 1 x F5 iWorkflow VE (v2.3)

• 1 x Linux Webserver

• 1 x Linux Jumphost

7

The following table lists VLANS, IP Addresses and Credentials for all components:

Component Management IP VLAN/IP Address(es) Credentials
Linux
Jumphost

10.1.1.20 Internal: 10.1.10.20
External: 10.1.20.20

ubuntu/supernetops

BIG-IP A 10.1.1.10 Internal: 10.1.10.10
Internal (Float):
10.1.10.13
External: 10.1.20.10
External (VIPs):
10.1.20.120-130

admin/admin
root/default

BIG-IP B 10.1.1.11 Internal: 10.1.10.11
Internal (Float):
10.1.10.13
External: 10.1.20.11
External (VIPs):
10.1.20.120-130

admin/admin
root/default

iWorkflow 10.1.1.12 N/A admin/admin
root/default

Linux
Server

10.1.1.15 Internal: 10.1.10.100-103 root/default

2.1.2 Lab Environments

In order to complete this class you will need to utilize a specific Lab Environment. You can consume this
training in a couple of ways:

• Pre-built Environment using a Ravello Blueprint

– Used at official F5 events such as F5 Agility, F5 Agility Roadshows, User Groups, MeetUps, etc.

– Access can be provided by your F5 Account Team

8

• Pre-built Environment using an Amazon AWS CloudFormation Template (CFT)

– Access is on-demand and uses your AWS account

• Pre-built Environment using the F5 Unified Demo Framework (UDF)

– This environment is currently available for F5 employees only

• Self-built Environment on your own infrastructure

– Review the Topology for details

Select the Environment from the list below to get started:

Amazon AWS Lab Environment Guide

Warning: The AWS CFT will run in your account. The template includes components and instances
that will incur a charge. This charge will be billed to your account.

Warning: The AWS CFT is currently in testing. You can complete Modules 1 & 2 of this class using the
template at this time.

You can use an Amazon CloudFormation Template (CFT) to launch your own lab environment in AWS. This
guide assumes the following:

• Pre-existing Amazon AWS account

• Access to create AWS Instances and Resources

• You have created an AWS Key Pair:

– http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

• You are responsible for all charges incurred

More information about AWS can be found here:

https://aws.amazon.com/

Task 1 - Determine your Source IP Address

The AWS lab environment restricts access based on your Source IP Address. We will use a website to
determine your Source IP for use in the next Task.

Note: If you Source IP address changes you will lose access to your environment.

Perform the following steps to complete this task:

1. Open a web browser window or tab and navigate to https://www.whatismyip.com/

2. Copy the IP Address shown in the Your IP Address is: box into your clipboard

9

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://aws.amazon.com/
https://www.whatismyip.com/

Task 2 - Launch the CloudFormation Template

Perform the following steps to complete this task:

1. Login to your AWS Management Console

Note: Access to the console is determined by your individual account setup.

If you are using a personal account you should be able to login using https://console.aws.amazon.
com/console/home

If you are using a corporate account please contant your IT Help Desk

2. Click Services and the top of the windows. Then type cloud into the search box and find the Cloud-
Formation item. Click the CloudFormation item:

3. Click the Create Stack button:

4. On the Select Template screen select the Specify an Amazon S3 template URL option. Copy and
paste the URL below into the box:

10

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home

https://s3.us-east-2.amazonaws.com/supernetops-cf-templates/class1.
template

Click the Next button

5. Complete the form in the Specify Details screen:

• Stack Name: Super-NetOps-Lab or a name of your choice

• Branch: master

• InstanceType: t2.medium

• KeyName: Select your AWS Key Pair

• UserIP: Paste the IP Address from Task 1 and add /32 to to the end.

Note: You can also specify a CIDR formatted Subnet in this field

6. Click the Next button

7. On the Options screen click the Next button at the bottom of the screen

8. On the Review screen check the I acknowledge that AWS CloudFormation might create
IAM resources with custom names field and click the Create button at the bottom of the screen

11

9. Click the Super-NetOps-Lab stack to view details of the deployment

10. Monitor the Events section of the page as the Stack deploys:

11. The CFT used performs a nested deployment, leveraging other CFT’s. The Events will notify you when
new status messages are available. Total deployment time varies. As the Stack is being deployed you
will see periodic CREATE_COMPLETED messages:

12

12. You can also go back to the page listing Stacks and monitor the progres of the nested templates from
there:

13. Once the Status of the Super-NetOps-Lab root stack shows CREATE_COMPLETED click the Out-
puts tab. You will see a Key named JumpHostPublicIP. The Value is the IP Address you can use
to connect to the Lab Jumphost using RDP, HTTPS or SSH (diagnostics only).

13

14. You can now connect to the Jumphost using RDP or HTTPS:

• RDP: Configure your RDP client to connect to the JumpHostPublicIP

• HTTPS: Using an HTML5 browser connect to https://<JumpHostPublicIP>

15. Select how you would like to continue:

• Review: BIG-IP Basics (optional)

• Start: Module 1: Imperative Automation with the BIG-IP iControl REST API

Ravello

If you are taking this class at a Meetup, User Group, F5 Agility or another official event, access details will
be provided by your instructor.

If you would like to take this class using our lab environment please contact your F5 Account Team for
access.

Once you have connected to your environment you can select how you would like to continue:

• Review: BIG-IP Basics (optional)

• Start: Module 1: Imperative Automation with the BIG-IP iControl REST API

F5 Unified Demo Framework (UDF)

Note: This environment is currently available for F5 employees only

Determine how to start your deployment:

• Official Events (ISC, SSE Summits): Please follow the instructions given by your instructor to join
the UDF Course.

• Self-Paced/On Your Own: Login to UDF, Deploy the Intro to Automation & Orchestion
Blueprint and Start it.

Connecting to the Environment

The lab environment provides two methods of access to the Jumphost:

14

• RDP Connection using an RDP Client

• HTML5 Browser based VNC Connection using noVNC

– Chrome

– Firefox

– Safari

– EDGE

Connect using RDP

1. In the UDF navigate to your Deployments

2. Click the Details button for your Deployment

3. Click the Components tab

4. Find the Linux Jumphost Component and click the the Access button. Then click the RDP option.
An RDP file will be downloaded to your system.

Note: The RDP file opens the session in Full Screen mode by default. You may want to open the file
in an RDP client and adjust these settings as needed to match your preference.

5. If you have the official Microsoft Remote Desktop Client installed please install it using the instruc-
tions at https://docs.microsoft.com/en-us/windows-server/remote/remote-desktop-services/clients/
remote-desktop-clients

6.
Warning: If you have a HiDPI display please refer to the Using HiDPI Displays (RDP & Windows)
instructions below

7. Open the RDP file in the Remote Desktop Client and connect. If you have any problems please ask
your instructor for help

8. Select how you would like to continue:

• Review: BIG-IP Basics (optional)

• Start: Module 1: Imperative Automation with the BIG-IP iControl REST API

Connect using an HTML5 Browser

1. In the UDF navigate to your Deployments

2. Click the Details button for your Deployment

3. Click the Components tab

4. Find the Linux Jumphost Component and click the the Access button. Then click the NOVNC
option. A new browser window/tab will be opened.

5. In the new browser window/tab click the Connect button followed by the Send Password button. You
should now be connected. If you have any problems please ask your instructor for help

6. Select how you would like to continue:

15

https://docs.microsoft.com/en-us/windows-server/remote/remote-desktop-services/clients/remote-desktop-clients
https://docs.microsoft.com/en-us/windows-server/remote/remote-desktop-services/clients/remote-desktop-clients

• Review: BIG-IP Basics (optional)

• Start: Module 1: Imperative Automation with the BIG-IP iControl REST API

Using HiDPI Displays (RDP & Windows)

Warning: Do these steps BEFORE you connect via RDP. Choose ONE. Do not do both.

If you are using a Hi Resolution Display on Windows we recommend that you either:

• RECOMMENDED: Resize your display to 1080p (1920 x 1080)

• Use your RDP clients “Zoom” funcitonality to increase the size

Resize your display (Windows 10) - RECOMMENDED

1. Right click on your Desktop and select Display Settings.

2. Click on Advanced Display Settings

3. Change the Resolution to 1920 x 1080 and click the Apply button

4. Connect to the RDP session

16

5. Select how you would like to continue:

• Review: BIG-IP Basics (optional)

• Start: Module 1: Imperative Automation with the BIG-IP iControl REST API

Use RDP Zoom

1. Right click on the RDP file and click on Edit

2. Under the Display tab change the resolution to 1920x1080, then click Connect

3. After you connect, access the menu at the top left of your RDP Window and change the Zoom level
(i.e. 175%).

4. Select how you would like to continue:

• Review: BIG-IP Basics (optional)

• Start: Module 1: Imperative Automation with the BIG-IP iControl REST API

17

2.2 BIG-IP Basics (optional)

Just in case you’re new to the F5 BIG-IP platform (or need a refesher) we’ve included some links and videos
below that will help get you started.

2.2.1 What is BIG-IP

Source: https://devcentral.f5.com/articles/lightboard-lessons-what-is-big-ip-26793

2.2.2 BIG-IP Basic Nomenclature

Source: https://devcentral.f5.com/articles/lightboard-lessons-big-ip-basic-nomenclature-26144

2.2.3 F5 DevCentral BIG-IP Basics Articles

BIG-IP Basics Articles: https://devcentral.f5.com/articles?tag=devcentral+basics

2.3 Module 1: Imperative Automation with the BIG-IP iControl REST
API

ProviderTenant

BIG-IPiApp Templates
& Deployments

Service
Templates

Service
Catalog

Service
Deployment

In this module you will learn the basic concepts required to interact with the BIG-IP iControl REST API.
Additionally, you will walk through a typical Device Onboarding workflow that results in a fully functional
BIG-IP Active/Standby pair. It’s important to note that this module will focus on showing an Imperative
approach to automation.

Note: The Lab Deployment for this lab includes two BIG-IP devices. For most of the labs we will focus on
configuring only the BIG-IP-A device (management IP and licensing have already been completed). BIG-
IP-B already has some minimal configuration loaded. In a real-world environment it would be necessary
to perform Device Onboarding functions on ALL BIG-IP devices. We are only performing them on a single
device in this lab so we are able to cover all topics in the time allotted.

18

https://devcentral.f5.com/articles?tag=devcentral+basics

Note: In order to confirm the results of REST API calls made in this lab, it’s beneficial to have GUI/SSH
sessions open to BIG-IP and iWorkflow devices. By default, BIG-IP and iWorkflow will log all REST API
related events locally to restjavad.0.log and also can be configured to log to a remote syslog server (see
https://support.f5.com/csp/article/K13080). Additionally, the ltm log file on BIG-IP will contain log messages
that pertain specifically to BIG-IP local traffic management events. These log file locations are below:

• BIG-IP:

– /var/log/ltm

– /var/log/restjavad.0.log

• iWorkflow:

– /var/log/restjavad.0.log

2.3.1 Lab 1.1: Exploring the iControl REST API

BIG-IP

REST Basics Authentication Global Settings Networking Clustering Transactions

Task 1 - Explore the API using the TMOS Web Interface

In this lab, we will explore the API using an interface that is built into TMOS. This utility is useful for un-
derstanding how TMOS objects map to the REST API. The interfaces implement full Create, Read, Update
and Delete (CRUD) functionality, however, in most practical use cases it’s far easier to use this interface
as a ‘Read’ tool rather than trying to Create objects directly from it. You can use TMUI or TMSH to create
the object as needed and then use this tool to view the created object with all the correct attributes already
populated.

Note: This guide may require you to Copy/Paste information from the guide to your jumphost. To make
this easier you can open a copy of the guide by using the Lab Guide bookmark in Chrome.

1. Open Google Chrome and navigate to the following bookmarks: BIG-IP A GUI, BIG-IP B GUI and
iWorkflow GUI. Bypass any SSL errors that appear and ensure you see the login screen for each
bookmark.

Warning: Skipping this step will result in errors in subsequent steps

19

https://support.f5.com/csp/article/K13080

Warning: We are using self-signed certificate in this lab. In your environment you must make sure
that you use certificate issued by your certificate authority for both production and lab equipments.
Not doing so would make it possible for an attacker to do a man-in-the-middle attack and allow him
the ability to steal passwords and tokens.

2. Navigate to the URL https://10.1.1.10/mgmt/toc (or click the BIG-IP A REST TOC bookmark).
The /mgmt/toc path in the URL is available on all TMOS versions 11.6 or newer.

3. Authenticate to the interface using the default credentials (admin/admin)

4. You will now be presented with a top-level list of various REST resources. At the top of the page there

is a search box that can be used to find items on the page. Type
net in the search box and then click on the ‘net’ link under iControl REST Resources:

5. Find the /mgmt/tm/net/route-domain Collection and click it.

6. You will now see a listing of the Resources that are part of the route-domain(s) collection. As you

can see the default route domain of 0 is listed. You can also create new objects by clicking the

button. Additionally resources can be deleted using the button or edited using the button.

The is used to copy JSON formatted resource with Ctrl+C. This can be useful when you want to
slightly change an existing resource

7. Click the 0 resource to view the attributes of route-domain 0 on the device:

20

Note: If you would like to learn more about the iControl REST API be sure to read the Demystifying
iControl REST article series at https://devcentral.f5.com/wiki/icontrolrest.homepage.ashx

2.3.2 Lab 1.2: REST API Authentication & ‘example’ Templates

BIG-IP

REST Basics Authentication Global Settings Networking Clustering Transactions

One of the many basic concepts related to interaction with REST API’s is how a particular consumer is
authenticated to the system. BIG-IP and iWorkflow support two types of authentication: HTTP BASIC and
Token-Based (TBA). It’s important to understand both of these authentication mechanisms, as consumers

21

https://devcentral.f5.com/wiki/icontrolrest.homepage.ashx

of the API will often make use of both types depending on the use case. This lab will demonstrate how to
interact with both types of authentication.

Throughout this and other classes in the series we will make use of the Postman REST API Client. You can
find more information about Postman at https://getpostman.com

Task 1 - Import the Postman Collection & Environment

In this task you will Import a Postman Collection & Environment for this lab. Perform the following steps to
complete this task:

1. Open the Postman tool by clicking the icon of the desktop of your Linux Jumphost. The
initial window may take a few moments to appear.

Note: The Postman client receives very frequent updates. If you are prompted to update the client
please click the Remind me later button to skip updating the version installed in your lab environment

2. By default the Postman clients requires verification of SSL/TLS Certificates to a public Root Certificate
Authority. By default BIG-IP, and many other, devices use a Self-Signed Certificate for SSL/TLS
connections. To allow connections with Self-Signed Certificates we need to modify the default settings
of Postman.

• Open the Postman Settings windows by click File → Settings:

22

https://getpostman.com

• Verify your client is configured to allow self-signed certificates by setting SSL certificate
verification to OFF

• Click the X in the top right of the Settings window

3. A Postman Collection lets you group individual REST requests together. This Postman collection can
then be shared and imported. To import a Postman Collection, click the Import button in the top left
of the Postman window

4. Click the Import from Link tab. Paste the following URL into the text box and click Import

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/
postman_collections/Class_1.postman_collection.json

23

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/Class_1.postman_collection.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/Class_1.postman_collection.json

5. You should now see a collection named F5 Programmability: Class 1 in your Postman Col-
lections sidebar. Postman automatically resizes its GUI depending on its window size. It might be
necessary to use the short Ctrl + \ (on Windows) or click the show sidebar icon at the bottom left
corner of postman if you do not see the sidebar.

6. To assist in multi-step procedures we make heavy use of the Environments capability in Postman.

24

This capability allows us to set various global variables that are then substituted into a request before
it’s sent. Import the Environment file by clicking Import → Import from Link and pasting the following
URL and clicking Import :

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/
postman_collections/Class_1.postman_environment.json

7. Set your environment to F5 Programmability: Class 1 by using the menu at the top right of
your Postman window:

Task 2 - HTTP BASIC Authentication

In this task, we will use the Postman client to send API requests using HTTP BASIC authentication. As its
name implies this method of authentication encodes the user credentials via the existing BASIC authentica-
tion method provided by the HTTP protocol. The mechanism this method uses is to insert an HTTP header
named ‘Authorization’ with a value that is built by Base 64 encoding the string <username>:<password>.
The resulting header takes this form:

Authorization: Basic YWRtaW46YWRtaW4=

It should be noted that cracking the method of authentication is TRIVIAL; as a result API calls should
always be performed using HTTPS encryption (F5 default) with a certificate signed by an authority rather
than HTTP.

Perform the following steps to complete this task:

1. Click the Collections tab on the left side of the screen, expand the F5 Programmability: Class
1 collection on the left side of the screen, expand the Lab 1.2 - API Authentication &
'example' Templates folder:

25

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/Class_1.postman_environment.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/Class_1.postman_environment.json

2. Click the Step 1: HTTP BASIC Authentication item. Click the Authorization tab and select
Basic Auth as the Type. Fill in the username and password (admin/admin) and click the Send
button:

3. Click the Headers tab and examine the HTTP header. Notice that the number of Headers in the
Headers tab changed from 1 to 2. This is because Postman automatically created the HTTP header
and updated your request to include it.

26

4. Click the Body tab, if the request succeeded you should be presented with a listing of the /mgmt/tm/
ltm Organizing Collection:

5. Click the Test Results tab and ensure all the tests for this request have passed:

27

6. Update the credentials and specify an INCORRECT password. Send the request again and examine
the response:

7. Check the Test Results tab and notice that our Unit Tests for this request are now failing (as expected):

Important: As you progress through this lab be sure to check the Test Results tab. We have included Unit
Tests where applicable to help you verify the requests being sent are succeeding. If you notice a test has
failed please double check your input or ask for help.

Task 3 - Token Based Authentication

One of the disadvantages of BASIC Authentication is that credentials are sent with each and every request.
This can result in a much greater attack surface being exposed unnecessarily. As a result, Token Based
Authentication (TBA) is preferred in many cases. TBA only sends the credentials once, on the first re-
quest. The system then responds with a unique token for that session and the consumer then uses that
token for all subsequent requests. BIG-IP and iWorkflow support token-based authentication that drops

28

down to the underlying authentication subsystems available in TMOS. As a result, the system can be con-
figured to support external authentication providers (Active Directory, RADIUS, TACACS, etc) and those
authentication methods can flow through to the REST API. In this task we will demonstrate TBA using the
local authentication database, however, authentication to external providers is fully supported.

Note: For more information about external authentication providers see the section titled About external
authentication providers with iControl REST in the iControl REST API User Guide available at https:
//devcentral.f5.com

Perform the following steps to complete this task:

1. Click the Step 2: Retrieve Authentication Token item in the Lab 1.2 Folder

2. Notice that we send a POST request to the /mgmt/shared/authn/login endpoint.

3. Click the Body tab and examine the JSON that we will send to BIG-IP to provide credentials and the
authentication provider:

4. Modify the JSON body and add the required credentials (admin/admin). Then click the Send button.

5. Examine the response status code. If authentication succeeded and a token was generated the
response will have a 200 OK status code. If the status code is 401 then check your credentials:

• Successful:

29

https://devcentral.f5.com
https://devcentral.f5.com

• Unsuccessful:

6. Once you receive a 200 OK status code examine the response body. The various attributes show the
parameters assigned to the particular token. Find the token attribute and copy it into your clipboard
(Ctrl+c) for use in the next step.

7. Click the Step 3: Verify Authentication Works item in the Lab 1.2 Postman collec-
tion. Click the Headers tab and paste the token value copied above as the VALUE for the
X-F5-Auth-Token header. This header is required to be sent on all requests when using token-
based authentication.

8. Click the Send button. If your request is successful you should see a 200 OK status and a listing of
the ltm Organizing Collection.

9. We will now update your Postman environment to use this auth token for the remainder of the lab.
Click the Environment menu in the top right of the Postman window and click Manage Environments:

30

10. Click the F5 Programmability: Class 1 item:

11. Update the value for bigip_a_auth_token by Pasting (Ctrl+v) in your auth token:

31

12. Click the Update button and then close the Manage Environments window. Because the subsequent
requests refer to the {{bigip_a_auth_token}} variable, you will not have to set the token in the
header of the following requests.

13. Click the Step 4: Set Authentication Token Timeout item in the Lab 1.2 Postman folder.
This request will PATCH your token Resource (notice the URI) and update the timeout attribute so
we can complete the lab easily. Examine the request type and JSON Body and then click the Send
button. Verify that the timeout has been changed to 36000 in the response:

Task 4 - Get a pool ‘example’ Template

In order to assist with REST API interactions, you can request a template of the various attributes of a
Resource type in a Collection. This template can then be used as the body of a POST, PUT or PATCH
request as needed.

Perform the following steps:

1. Click the Step 5: Get ‘example’ of a Pool Resource item in the Lab 1.2 Postman collec-
tion

32

2. Examine the URI. Notice the addition of example at the end of the collection name:

3. Click Send and examine the FULL response. You will see descriptions and then all the attributes for
the Pool resource type. The response also shows the default values for the attributes if applicable:

2.3.3 Lab 1.3: Review/Set Device Settings

BIG-IP

REST Basics Authentication Global Settings Networking Clustering Transactions

All devices are already licensed so we can focus on configuring the basic infrastructure related settings to
complete the Device Onboarding process. The remaining items include (list not exhaustive):

• Device Settings

33

– NTP/DNS Settings

– Remote Authentication

– Hostname

– Admin Credentials

• L1-3 Networking

– Physical Interface Settings

– L2 Connectivity (VLAN, VXLAN, etc.)

– L3 Connectivity (Self IPs, Routing, etc.)

• HA Settings

– Global Settings

* Config Sync IP

* Mirroring IP

* Failover Addresses

– CMI Device Trusts

– Device Groups

– Traffic Groups

– Floating Self IPs

We will specifically cover the items in BOLD above in the following labs. It should be noted that many
permutations of the Device Onboarding process exist due to the nature of real-world environments. This
class is designed to teach enough information so that you can then apply the knowledge learned and help
articulate and/or deliver a specific solution for your environment.

Task 1 - Set Device Hostname & Disable GUI Setup Wizard

In this task we will modify the device hostname and disable the GUI Setup Wizard. The Resource that
contains these settings is /mgmt/tm/sys/global-settings.

Perform the following steps to complete this task:

1. Expand the Lab 1.3 - Review/Set Device Settings folder in the Postman collection

2. Click the Step 1: Get System Global-Settings request. Click the Send button and review
the response body to see what the current settings on the device are. Examine the resulting response
to understand what settings are currently applied.

3. Click the Step 2: Set System Global-Settings request. This item uses a PATCH request
to the global-settings resource to modify the attributes contained within it. We will update the
guiSetup and hostname attribute.

• Click on body. Review the JSON body and modify the hostname attribute to set the hostname
to bigip-a.f5.local

• Also notice that we are disabling the GUI Setup Wizard as part of the same request:

34

4. Click the Send button and review the response body. You should see that the attributes modified
above have been updated by looking at the response. You can also GET the global-settings by
sending the Step 1: Get System Global-Settings request again to verify they have been
updated.

Task 2 - Modify DNS/NTP Settings

Note: This task will make use of JSON arrays. The syntax for defining a JSON array is:

myArray: [Object0, Object1 ... ObjectX]

To define an array consisting of Strings the syntax is:

myStringArray: ["string0", "string1" ... "stringX"]

Much like the previous task we can update system DNS and NTP settings by sending a PATCH request to
the correct resource in the sys Organizing Collection. The relevant Resources for this task are:

URL Type
/mgmt/tm/sys/dns DNS Settings
/mgmt/tm/sys/ntp NTP Settings

Perform the following steps to complete this task:

1. Click the Step 3: Get System DNS Settings item in the folder. Click Send and review the
current settings

2. Click the Step 4: Set System DNS Settings item in the folder. Click body. Review the JSON
body to verify the name server IPs 4.2.2.2 and 8.8.8.8 are listed. Additionally, add a search
domain of f5.local. You will modify a JSON array to add a search domain.

3. Click the Send button and verify the requested changes were successfully implemented by looking at
the response or by sending the Step 3: Get System DNS Settings request again.

4. Click the Step 5: Get System NTP Settings item in the folder. Click Send and review the
current settings

5. Click the Step 6: Set System NTP Settings item in the folder. Click Body. Review the JSON
body to verify the NTP servers with hostnames 0.pool.ntp.org and 1.pool.ntp.org are con-
tained in the servers attribute (another JSON array!).

35

6. Click the Send button and verify the requested changes were successfully implemented by looking at
the response or sending the Step 5: Get System NTP Settings again.

Task 3 - Update default user account passwords

In this task we will update the passwords for the root and admin accounts. The process for updating the
root account is different than other system accounts because it is used by underlying Linux OS.

To update the root account password we will use a POST to the /mgmt/shared/authn/root REST
endpoint.

To update all other system accounts we will PATCH the /mgmt/tm/auth/user/<username> Resource

Perform the following steps to change the root user password:

1. Click the Step 7: Set root User Password item in the folder.

2. We are performing a POST operation to change the root user password and have to specify the
oldPassword because the REST implementation on the BIG-IP uses the underlying Linux mecha-
nism. Click Body. Modify the JSON body to update the password to the value newdefault and click
the Send button.

3. You can verify the password was changed by opening an SSH session to BIG-IP-A. A shortcut to a
terminal is included on the desktop of the Linux jumphost. To open an SSH connection to BIG-IP A
open a terminal window and execute ssh root@10.1.1.10

4. Repeat the procedure above to change the password back to default

Perform the following steps to change the admin user password:

1. Click the Step 8: Set admin User Password item in the collection.

2. We are performing a PATCH operation to admin user Resource. Click Body and modify the JSON
body to update the password to the value newadmin and click the Send button.

36

3. You can verify the password was changed by opening an SSH session OR by logging into
TMUI (HTTP GUI) to BIG-IP-A in a Chrome browser tab.

4. Repeat the procedure above to change the password back to admin

2.3.4 Lab 1.4: Basic Network Connectivity

BIG-IP

REST Basics Authentication Global Settings Networking Clustering Transactions

This lab will focus on configuration of the following items:

• L1-3 Networking

– Physical Interface Settings

– L2 Connectivity (VLAN, VXLAN, etc.)

– L3 Connectivity (Self IPs, Routing, etc.)

We will specifically cover the items in BOLD above in the following labs. It should be noted that many
permutations of the Device Onboarding process exist due to the nature of different organizations. This
class is designed to teach enough information so that you can then apply the knowledge learned and help
articulate and/or deliver a specific solution for your environment.

The following table and diagram lists the L2-3 network information used to configure connectivity for BIG-
IP-A:

37

Type Name Details
VLAN Internal Interface: 1.1

Tag: 10
VLAN External Interface: 1.2

Tag: 20
Self IP Self-Internal Address: 10.1.10.10/24

VLAN: Internal
Self IP Self-External Address: 10.1.20.10/24

VLAN: External
Route Default Network: 0.0.0.0/0

GW: 10.1.20.1

Task 1 - Create VLANs

Note: This lab shows how to configure VLAN tags, but does not deploy tagged interfaces. To use tagged
interfaces the tagged attribute needs to have the value true

Perform the following steps to configure the VLAN objects/resources:

1. Expand the Lab 1.4 - Basic Network Connectivity folder in the Postman collection.

2. Click the Step 1: Create a VLAN request in the folder. Click Body and examine the JSON
request body; the values for creating the Internal VLAN have already been populated.

3. Click the Send button to create the VLAN

4. Repeat Step 1, however, this time modify the JSON body to create the External VLAN using the
parameters shown in the table above. In order to do so you can replace the following:

• name: Internal –> External

38

• tag: 10 –> 20

• interfaces[] --> name: 1.1 –> 1.2

5. Click the Step 2: Get VLANs request in the folder. Click the Send button to GET the VLAN
collection. Examine the response to make sure both VLANs have been created.

Task 2 - Create Self IPs

Perform the following steps to configure the Self IP objects/resources:

1. Click the Step 3: Create Internal Self IP request in the folder. Examine the JSON body;
the values for creating the Self-Internal Self IP have already been populated.

Note: The JSON body sets the VLAN to /Common/External on purpose. You will modify this value
in the steps below. Please do not change the value.

2. Click the Send button to create the Self IP

3. Click the Step 4: Create External Self IP request in the folder and click Send

4. Click the Step 5: Get Self-Internal Self IP Attributes request in the folder and click
the Send button. Examine the VLAN settings of the Resource. As noted above the Self IP has been
assigned to the wrong VLAN (intentionally)

Note: Postman has the ability to check the responses for specific values to verify if the result of a
request is what it is expected to be. The :guilabel:Test Results for this request will show a failure
for the [Check Value] vlan == /Common/Internal value. This is intentional and you should
continue to the next section.

39

Task 3 - Modify Existing Self IP Resource

In order to modify an existing object via the REST API, the URI path has to be changed. In the previous
examples we used a POST to create Resources under a Collection, therefore, the URI used was that of the
Collection itself. If you wish to update/modify a Resource you must refer to the Resource directly.

For example, the Collection URI for Self IPs is /mgmt/tm/net/self.

The Resource URI for the Self-Internal Self IP is /mgmt/tm/net/self/
~Common~Self-Internal. Notice that the BIG-IP partition and object name has been added to
the Collection URI to for the Resource URI.

1. On the open Step 5: Get Self-Internal Self IP Attributes request change the re-
quest method from GET to PATCH. The PATCH method is used to modify the attributes of an existing
Resource.

40

2. Copy the entire JSON RESPONSE from the previous GET request

3. Paste the text into JSON Request body:

41

Note: Be sure to highlight any existing text and replace it while pasting

4. In the JSON body change the vlan attribute to /Common/Internal and click Send:

42

5. Click the Step 6: Get Self IPs item in the collection. Click the Send button to GET the Self IP
collection. Examine the response to make sure both Self IPs have been created and belong to the
appropriate vlan.

Task 4 - Create Routes

Perform the following steps to configure the Route object/resource:

1. Before creating the route, we double check the content of the routing table. Click the Step 7: Get
Routes item in the collection. Click the Send button to GET the routes collection. Examine the
response to make sure there is no route.

2. Click the Step 8: Create a Route item in the collection. Examine the JSON body; the values
for creating the Default Route have already been populated.

3. Click the Send button to create the Route

4. Click the Step 9: Get Routes item in the collection again. Click the Send button to GET the
routes collection. Examine the response to make sure the route has been created.

43

2.3.5 Lab 1.5: Building Imperative Workflows with Postman Collections

BIG-IP

REST Basics Authentication Global Settings Networking Clustering Transactions

As you have seen in the previous lab’s we can use the Collections and Folders features of the Postman
client to group REST requests logically. Additionally, as you’ve seen most of the examples so far have
consisted of executing a sequence of REST request to achieve some outcome.

In this lab, we will use a feature in Postman called the Collection Runner (Runner) to execute a sequence
of REST requests. Using the Runner we can rapidly prototype REST requests into an Imperative Workflow
that can be executed without user intervention.

The purpose of this exercise is to provide an example of how new workflows can be built from scratch or
existing workflows can be modified.

Additionally, we will use some Postman Javascript Tests to programmatically populate environment variables
with the output of our workflow.

Task 1 - Open and Run a Collection

1. The collection we will run in this task will populate some environment variables with various data
about the BIG-IP system. First, let’s examine the Environment Variables that are currently set. Click

the icon in the top right of the Postman window. Notice that there are no variables starting
with the name lab1.5_:

44

2. Click the Lab 1.5 - Building Imperative Workflows folder to expand it

3. Click the Step 1: Get BIG-IP Software Version request. Click the Tests tab and examine
the Javascript code and comments:

45

The Javascript code in the Test script will populate an environment variable based on the response
from the BIG-IP system.

4. Click the Runner button at the top right of your Postman window:

5. Select the F5 Programmability: Class 1 Collection then the Lab 1.5 - Building
Imperative Workflows folder. Next, be sure the environment is set to F5 Programmability:
Class 1:

46

Your Runner window should look like:

47

6. Click the Run Lab 1.5 - Buil. . . button

7. The results window will now populate. You will see each request in the folder is sent and it’s associated
test results are displayed on the screen. The last request in the folder includes some Javascript code
to dump the results to the screen:

48

8. Next, switch back to the main Postman window. Click the button again and examine the
environment variables. Notice that three new variables starting with the name lab1.5_ have been
populated:

Note: It is normal for the values of Software Version, CPU Count and Base MAC Address be different than
the screenshot(s).

In this lab, we demonstrated running a simple Imperative Workflow using the Postman Collection Runner.
In subsequent labs, we will expand on this simple use case to perform more complex functions. As you
continue through the labs be sure to take time to explore the details of the requests being sent. The
Postman Collection used in this class can also serve as a starting point for building your own collections or
modifying existing ones.

As we move through the rest of this module you will see the complexity involved in building Imperative Work-
flows. While these types of workflows are incredibly powerful, they are also time-consuming to build from
scratch. As we move into Module 2 you will see the importance of leveraging Abstraction and Declarative
Interfaces to minimize the amount of time spent building Imperative Workflows.

49

2.3.6 Lab 1.6: Build a BIG-IP Cluster using a Collection

BIG-IP

REST Basics Authentication Global Settings Networking Clustering Transactions

In this lab, we will build an active-standby cluster between BIG-IP-A and BIG-IP-B using the REST API. As
mentioned previously, to save time, BIG-IP-B is already licensed and had its device-level settings configured.
This lab will use the Postman Runner functionality introduced in the previous lab. We will run the requests
in a Collection Folder to build the cluster. If you examine the Lab 1.6 - Build a Cluster folder in the
Collection you can see how complex Imperative processes can become. Clustering is one of the transition
points for most customers to move into the Declarative model (if not already done) due to the need to
abstract device/vendor level specifics from Automation consumers.

The high-level procedure required to create the cluster is:

1. Obtain Authentication Tokens for BIGIP A & B

2. Check that both devices are licensed and ready to configure

3. Configure Device Level settings on both devices

4. Configure Networking on BIGIP-B (remember this was already done in Lab 1.4 for BIGIP-A)

5. Set BIGIP-A & BIGIP-B CMI Parameters (Config Sync IP, Failover IPs, Mirroring IP)

6. Add BIGIP-B as a trusted peer on BIGIP-A

7. Check the status of the Sync Groups

8. Create a sync-failover Device Group

9. Check the status of the created Device Group

10. Perform initial sync of the Device Group

11. Check status (again)

12. Change the Traffic Group to use HA Order failover

13. Create Floating Self IPs

14. Failover the Traffic Group to make BIGIP-A the Active device

Task 1 - Build a Cluster using Runner

In this task we will use the Runner to execute a series of requests contained in the Lab 1.6 - Build
a Cluster folder. As mentioned previously this folder contains a large number of REST requests re-
quired to build an Active/Standby cluster. Additionally, we will make use of a JavaScript framework called
f5-postman-workflows that extends the Postman client to include common test and polling functions.

Perform the following steps to build the cluster:

50

1. Click the Runner button at the top right of your Postman window:

2. Select the F5 Programmability: Class 1 Collection then the Lab 1.6 - Build a
Cluster folder. Next, be sure the environment is set to F5 Programmability: Class 1:

51

52

Your Runner window should look like:

53

54

3. Click the Run Lab 1.6 - Buil. . . button

4. The results window will now populate. You will see each request in the folder is sent and it’s associated
test results are displayed on the screen. Building the cluster can take a few minutes. You can follow
the progress by scrolling down the results window.

5. Once the Run Summary button appears the folder has finished running. You should have 0 failures
and the last item in the request list should be named Cleanup Environment

6. At this point you can log into BIG-IP A using Chrome at https://10.1.1.10 and verify the cluster
was built by using the menu in the BIG-IP GUI to navigate to Device Management → Overview and
verifying the cluster and failover status indicators are all Green

55

2.3.7 Lab 1.7: Build a Basic LTM Config using REST Transactions

BIG-IP

REST Basics Authentication Global Settings Networking Clustering Transactions

In this lab we will build a basic LTM Config using iControl REST API Transactions.

Task 1 - Create a Transaction

Transactions are very useful in cases where you would want discrete REST operations to act as a batch
operation. As a result, the nature of a transaction is that either all the operations succeed or none of them
do (all-or-nothing). This is very useful when creating a configuration that is linked together because it allows
the roll back of operations in case one fails. All the commands issued are queued one after the other in
the transaction. We will also review how to change the order of a queued command or remove a single
command from the queued list before committing.

Note: Transactions are essential to ensure that an Imperative process is Atomic in nature.

Warning: Transactions have a default timeout of 120 seconds. Taking longer than the timeout to
execute the transaction will result in its automatic deletion. To avoid having to redo the steps in this task,
please read the steps below first and then execute each one in a timely manner.

Perform the following steps to complete this task:

1. Expand the Lab 1.7 - Build a Basic LTM Config using Transactions folder in the
Postman collection:

56

2. Click the Step 1: Create a Transaction item. Examine the URL and JSON body. We will
send a POST to the /mgmt/tm/transaction endpoint with an empty JSON body to create a new
transaction.

3. Click the Send button to send the request. Examine the response and find the transId attribute.
Additionally, notice that there are timeouts for both the submission of the transaction and how long it
should take to execute. Be aware that after the timeoutSeconds value, this transId will be silently
removed:

57

The transId value has been automatically populated for you in the bigip_transaction_id en-
vironment variable:

4. Click the Step 2: Add to Transaction: Create a HTTP Monitor item in the Postman
collection. This request is the same as a non-transaction enabled request in terms of the POST
request method, URI and JSON body. The difference is we add a X-F5-REST-Coordination-Id
header with a value of the transId attribute to add it to the transaction:

5. Click the Send button and examine the response

6. Examine and click Send on Steps 3-6 in the folder

58

7. Click Step 7: View the Transaction Queue. Examine the request type and URI and click
Send. This request allows you to see the current list of ordered commands in the transaction.

Task 2 - Modify a Transaction

1. Click the Step 8: View Queued Command 4 from Transaction item in the folder. Examine
the request method and URI. We will GET command number 4 from the transaction queue.

2. Click the Step 9: Change Eval Order 4 -> 1 item in the folder. Examine the request
method, URI and JSON body. We will PATCH our transaction resource and change the value of
the evalOrder attribute from 4 to 1 to move at the first position of the transaction queue:

Note: Requests in the ordered transaction queue must obey the order of operations present in the
underlying BIG-IP system.

Warning: When sending the Header X-F5-REST-Coordination-Id, the system assumes you
want to ADD an entry in the transaction queue. You MUST remove this header if you want to issue
transaction queue changes (like deleting an entry from the queue, changing the order, committing
a transaction). If you don’t remove the header, the system will respond with a 400 HTTP error
code with the following error text:

"message": "Transaction XXXXX operation is not allowed to be
added to transaction."

59

3. Click the Step 10: View the Transaction Queue Changes item in the folder. Verify that
request number 4 has moved into position 1 and the order of all other requests has been updated
accordingly.

Task 3 - Commit a Transaction

1. Click the Step 11: Commit the Transaction item in the folder. Examine the request type,
URI and JSON body. We will PATCH our transaction resource and change the value of the state
attribute to submit the transaction:

2. Click the Send button and examine the response. The state may already be COMPLETED, however,
it’s good practice to explicitly check for this.

3. Click the Step 12: View the Transaction Status item in the folder and click the Send but-
ton. Verify that the state of the transaction is COMPLETED

60

4. You can verify the configuration was created on the BIG-IP device via the BIG-IP A GUI at https:/
/10.1.1.10

5. Verify the virtual server works by opening http://10.1.20.120 in the Chrome web browser

2.4 Module 2: Abstracting Services using iApp Templates

ProviderTenant

BIG-IPiApp Templates
& Deployments

Service
Templates

Service
Catalog

Service
Deployment

In this Module, we will continue working with the BIG-IP REST interface. However, we will now introduce
F5 Declarative Interfaces built with F5 iApp templates.

iApps are a user-customizable framework for deploying applications that enables you to templatize sets of
functionality on your F5 devices. For example, you can automate the process of adding virtual servers or
build a custom iApp to manage your iRules inventory.

iApps are commonly thought of as a Wizard style deployment helper, but they are actually a Declarative
Interface (like REST Transactions).

When an iApp deploys, a single call - declaring the desired deployment - is processed on the BIG-IP in the
correct order of operations. All created objects are associated with an Application Service Object (ASO).
The ASO model identifies which objects belong to the iApp service deployment. Upon service deletion, all
service related objects are recursively deleted.

We will be using the F5 App Services Integration iApp (App Services iApp for short).

For further information about the App Services iApp see:

• GitHub Repository: https://github.com/F5Networks/f5-application-services-integration-iApp

• User Guide: https://devcentral.f5.com/wiki/iApp.AppSvcsiApp_userguide_userguide.ashx

An overview of iApps and different iApp templates that available can be found at:

• https://devcentral.f5.com/iapps

Note: This module requires the underlying network configuration that was completed in Module 1. Addi-
tionally, BIG-IP A must be the Active node in the cluster

Note: This module deploys the configuration to BIG-IP A. iApp deployments leverage the underlying config-
sync mechanisms in the cluster. Once deployed on BIG-IP A, the configuration will be automatically synced
to BIG-IP B

61

https://github.com/F5Networks/f5-application-services-integration-iApp
https://devcentral.f5.com/wiki/iApp.AppSvcsiApp_userguide_userguide.ashx
https://devcentral.f5.com/iapps

2.4.1 Lab 2.1: Exploring iApps

iApp Templates & Deployments

iApp Basics iApp Templates iApp Deployments

iApp Templates & Deployments

A BIG-IP device has multiple ways to install an iApp onto its platform, including TMOS Shell (TMSH), the
GUI (TMUI), and the REST Interface. All mechanisms are valid and, if needed, can be used in conjunction
with each other.

For instance, you can install an iApp template from the GUI and then deploy a new service via iControl
REST using tools like cURL, Postman and Ansible.

Note: Redeployment of iApp templates makes use of an underlying mechanism in the BIG-IP platform that
allows safe changes to the configuration without interrupting existing user traffic.

F5 iApps were introduced in TMOS Version 11, they can interact within, and across different F5 modules
providing full Layer 4-7 Application Service capability. The iApp Template is used to drive an iApp Deploy-
ment that creates a configuration under an Application Service Object (ASO). The ASO model identifies
which objects belong to the iApp service deployment. Upon service deletion, all service related objects are
recursively deleted.

Some examples of the modules we can use iApp templates to configure:

• Local Traffic Manager

• Advanced Firewall Manager

• Application Security Manager

• Access Policy Manager

Note: Application Service in the GUI and service in the REST API are the same objects. The
name is slightly abbreviated in the API.

You can find the GUI representation of iApps on the left-hand side of the UI under iApps. iApp deployments
are located under Application Services, while iApp templates are located under Templates on the system.

• Application Services (iApp deployments)

62

• Templates (iApp templates)

63

The associated REST API endpoints are:

• iApp Deployments: /mgmt/tm/cloud/services/iapp

• iApp Templates: /mgmt/tm/sys/application/template

iApp Deployments and Source-of-Truth

By default, iApp technology implements a strict source-of-truth preservation mechanism called Strict Up-
dates. The App Service iApp allows granular configuration of the underlying TMOS objects without dis-
abling the Strict Updates mechanism, however, not all iApp templates implement this functionality.

In non-automated environments, the impact of this can be justified. However, in automated environments
we must always guarantee that the template inputs are the Source-of-Truth for an underlying deployment.
As a result, Strict Updates should not be disabled.

For example, creating an iApp deployment, disabling Strict Updates and then modifying the underlying
configuration results in a Source-of-Truth violation because redeployment of the iApp would result in the
changes made directly to the configuration being overwritten. It is because the direct modification of the
configuration moved the Source-of-Truth to the object itself, rather than the iApp deployment input values
that automation tools are interacting with.

64

2.4.2 Lab 2.2: Deploying iApp Templates on BIG-IP

iApp Templates & Deployments

iApp Basics iApp Templates iApp Deployments

iApps typically come in the form of a .tmpl file, which contains the content needed for the BIG-IP to utilize
it as a Service framework. Different toolkits will install iApps in different ways. We’ll be using the REST API
in a raw form, so the content of the file is what we need. As a result, we need to ensure that the content of
the iApp is URL encoded to make sure the BIG-IP reads the payload correctly. This is specific for the iApp
deployment over REST API. When using other tools like Ansible, the whole .tmpl file can be uploaded,
removing the need for encoding.

Note: This lab work will be performed from Lab 2.2 - Deploying iApp Templates on BIG-IP
folder in the Postman Collection

65

Task 1 - View Installed iApp Templates

Perform the following steps to complete this task:

1. Send the Step 1: Get Installed iApp Templates request to view iApp templates installed
on the BIG-IP device:

2. Review the JSON response Body. The JSON payload shows a iApp templates that are installed by
default on the BIG-IP device:

66

Task 2 - Install the App Services iApp Template

Perform the following steps to complete this task:

1. Send the Step 2: Install App Svcs v2.0.004 iApp Template request to install the iApp
template:

2. Review the Request JSON Body, and the Response JSON Body. In this task we installed the App
Services iApp Template and the BIG-IP sent back a response that the iApp was installed with its object
name.

Note: The JSON body in the Request portion is automatically generated as part of the build process
for the App Services iApp and the request in the Postman Collection was copied from a pre-built
collection that ships with releases of the App Services iApp template.

67

2.4.3 Lab 2.3: Create iApp Deployments using the REST API

iApp Templates & Deployments

iApp Basics iApp Templates iApp Deployments

Now that the App Services iApp template is installed, we can deploy a new Layer 4-7 Service. The ser-
vice in this lab will go through different iterations, we’ll start with Creating a Basic HTTP Service, show
Modifying the service by changing the node state, and then Delete the whole service. Once we’ve seen
this first Mutation, we’ll introduce some more complex deployments options with iRules, Custom Profiles,
Certificates, and an ASM Policy.

Note: This lab work will be performed from Lab 2.3 - Create iApp Deployments using the
REST API folder in the Postman Collection

68

Task 1 - View Deployed Services

Perform the following steps to complete this task:

1. Send the Step 1: Get Deployed iApp Services request to view current iApp deployments
on the BIG-IP device:

2. Review the JSON Response Body. The BIG-IP device does not have any iApp deployments. As a
result the items array is empty ([]):

69

Task 2 - Deploy Basic HTTP Service

Perform the following steps to complete this task:

1. Click Step 2: Deploy Service - HTTP. Review the Request JSON Body. The JSON body of
the POST contains the input for the iApp template to drive the deployment of the service.

2. Click the Send button to Create a Basic HTTP Service:

70

In this task, we deployed our first service. Review the Response JSON Body to verify if the Service
has been deployed.

Note: We’ve just progressed into a Declarative instantiation, by defining the end state and letting
the BIG-IP handle the order of operations and configuration of the specific objects. By doing this, we
have drastically reduced the Domain Specific Knowledge requirement to interact with the device. In
the next module, we will combine this concept with Abstraction to further simplify the interface.

3. Now that the service has been deployed, let’s review the BIG-IP configuration. You can review via
REST by sending the Step 1: Get Deployed iApp Services request again, or you can login
to the BIG-IP A GUI and see the service deployment via TMUI:

• REST: Send Step 1: Get Deployed iApp Services request:

• TMUI GUI: iApps → Application Services → Applications

71

4. From the TMUI GUI, examine the Virtual Server that was created from this deployment by clicking
Local Traffic → Virtual Servers → Virtual Server List → Demo_vs. The configuration is simple, but
it does contain the key components for an HTTP service (Listener, HTTP Profile, Monitor, Pool, and
Pool Members):

5. The service is available and active, you can connect to the Virtual Server using Chrome at http://
10.1.20.121 and examine its response:

72

Note: The colors of the text, images, and borders may vary based on which back-end server was
selected during the load balancing process.

Task 3 - Modify our Deployed Service

In this task, we will modify the existing service. We will disable all pool members and bring the service
down.

Perform the following steps to complete this task:

1. Click on Step 3: Modify Service - HTTP. Review the Request URL and JSON Body. Notice
that we specified the Resource URL for our deployment. Modifying or Redeploying a service is
handled by sending only the updated JSON to the specific Resource (our service) using a PUT request
method. We set the state of the pool members to disabled which forces the service offline.

73

2. Click the Send button to Modify the previously deployed Basic HTTP Service:

3. In the BIG-IP GUI click Local Traffic → Network Map to view the new state of the Pool Members (Black
indicators reflect the disabled state). The state has been updated to reflect the state we declared in
our call. The Virtual Server is no longer passing traffic at http://10.1.20.121 because all the
Members in the Pool are disabled:

74

Task 4 - Delete our Deployed Service

The lifecycle of a service also includes the service removal. We will now delete an existing service.

Perform the following steps to complete this task:

1. Send the Step 4: Delete Service - HTTP request to Delete the previously deployed Basic
HTTP Service:

2. Like modification, the deletion of a service is performed on the Resource URL. When we created the
service we defined a Declarative state to the iApp template. The template then created the configura-
tion and all the associated objects. With a DELETE request, the BIG-IP will processes the removal of
all objects linked to the ASO in the correct order. This is crucial to Application Lifecycle Management
as it provides a mechanism to make sure all parts of the service are removed successfully.

Note: There is no JSON body to a DELETE call, as the HTTP Method is defining the action.

Now that the service has been deleted, let’s review the BIG-IP configuration. You can review via REST
by sending the Step 1: Get Deployed iApp Services request again, or you can login to the
BIG-IP A GUI and see the service deployment via TMUI:

• REST: Send Step 1: Get Deployed iApp Services request:

• TMUI GUI: iApps → Application Services → Applications

75

Task 5 - Deploy an HTTP Service with Custom created Profile and a referenced iRule

Perform the following steps to complete this task:

1. Send the Step 5: Deploy Service - HTTP w/ iRule and Custom Profiles request to
deploy an HTTP Service with Custom Profiles and an iRule:

2. The App Services iApp can Create or Reference various objects. In this deployment we perform two
actions:

(a) Create custom profiles on the BIG-IP device with various options specified. These profiles do not
exist on the BIG-IP but are created dynamically during the deployment.

(b) Create an iRule on the BIG-IP device by using a URL Reference. The App Services iApp
downloads the iRule resource from the URL and then creates a new iRule object on the system.
The iRule object is then automatically linked to the Virtual Server

Warning: When using URL references, it is important to properly secure the repository which
hosts the resource(s). The example in this lab uses a publicly readable repository, however,
most environments should use a private repository with appropriate access control.

3. Review the Request JSON Body to see how the desired outcomes above were declared:

• Custom Profiles:

76

• URL Referenced iRule:

• iRule linked to Virtual Server: (Local Traffic → Network Map)

4. Open Chrome and connect to the Virtual Server at http://10.1.20.121. The iRule that was
attached to the service contains an HTTP_RESPOND event, which responds with a simple Maintenance
Page.

77

Task 6 - Deploy an HTTPS Service

Perform the following steps to complete this task:

1. Send the Step 6: Deploy Service - HTTPS request to deploy an HTTPS Service using URL
Resources for the SSL/TLS Key, Certificate and Certificate Bundle.

2. iApps are a Declarative interface, allowing us to modify deployment without the need to delete it (this
also means we can re-name objects if we needed too). For this service we will:

• Use the same custom profiles

• Remove the iRule

• Change the Listener port to 443 (HTTPS)

• Use URL Resources to obtain the SSL/TLS Key, Certificate and Certificate Bundle

Warning: When using URL references, it is important to properly secure the repository which
hosts the resource(s). The example in this lab uses a publicly readable repository. However,
most environments should use a private repository with appropriate access control.

• Create and apply a Client SSL Profile

3. Review the Request JSON Body to see how the desired outcomes above were declared:

4. Review the configured Virtual Servers in the TMUI GUI. The App Services iApp created a new Virtual
Server to redirect TCP/80 traffic to TCP/443 and reconfigured the Virtual Server to listen on TCP/443

78

5. The configuration of the Virtual Server now uses an SSL Client profile containing our imported SSL
Resources. The deployment is now providing SSL Offload for the backend compute nodes.

79

6. Open Chrome and access the service with http://10.1.20.121. It should redirect you to
https://10.1.20.121.

Note: We are using self signed certificates in the lab so an SSL warning will be shown.

80

Warning: When you open this page you may continue to keep the Maintence Page from the
previous Task. This occurs because of two reasons:

(a) Chrome keeps HTTP connections open in the background to improve network performance

(b) BIG-IP maintains a fully versioned configuration internally. Stateful connections, like HTTP,
are then pinned to a specific version of the configuration for the lifetime of the connection.

As a result, because Chrome has not closed the actual TCP connection, BIG-IP still processes
traffic with the configuration that was present when the connection was originally created.

You can open an Incognito Chrome Window (Ctrl-Shift-N) and try to connect to http://10.1.
20.121 again. The connection in the Incognito window should behave as expected because it’s a
new connection and therefore uses the most recent configuration.

Task 7 - Deploy an HTTPS Service with an Web Application Firewall Policy

Another advantage of Service Deployment using iApp Templates is that they can deploy advanced Layer
4-7 services from various F5 modules. In this task we will deploy a service that includes a Web Application
Firewall policy with the base HTTPS offload and load balancing features.

Perform the following steps to complete this task:

1. Send the Step 7: Deploy Service - HTTPS w/ WAF Policy request to deploy an HTTPS
Service using URL Resources for a Web Application Firewall policy that will be used with the Appli-
cation Security Manager (ASM) module.

81

2. This final iApp deployment will build upon our service by having the iApp load a WAF policy Resource
from our repository. The App Services iApp will then create a Layer 7 Traffic Policy and apply it to the
Virtual Server.

This deployment recognizes the need for Security from the beginning of the application lifecycle. It
lays the groundwork for Continuous Improvement by having the policy reside in a repository. It
allows us to treat resources as code leading to an Infrastructure as Code (IaC) methodology. As the
policy is updated in the repository additional automation and orchestration can be enabled to deploy
the policy into the environment. The result is an ability to rapidly build, test and iterate Layer 7 security
policies and guarantee deployment into the environment.

3. Review the Request JSON Body to see how the desired outcomes above were declared:

• Layer 7 Policy Rules:

• Layer 7 Policy Actions:

82

• ASM Policy URL:

4. In the TMUI GUI, we can see the Layer 7 policy applied to the Virtual Server. In the Application
Security, we can see the details of the policy which was dynamically fetched, applied, and set to
Blocking mode.

• Layer 7 Policy:

• Layer 7 Policy attached to Virtual Server:

83

• ASM WAF Policy:

84

2.5 Module 3: Creating Declarative Service Interfaces with iWorkflow

ProviderTenant

BIG-IPiApp Templates
& Deployments

Service
Templates

Service
Catalog

Service
Deployment

In this module we will explore how to use F5’s iWorkflow platform to further abstract application services
and deliver those services to tenants. iWorkflow has two main purposes in the Automation & Orchestration
toolchain:

• Provide simplified but customizable Device Onboarding workflows

• Provide a tenant/provider interface for L4 - L7 service delivery

When moving to an iWorkflow based toolchain it’s important to understand that L1-3 Automation (Device
Onboarding, Networking, etc) and L4-7 (Deployment of Virtual Servers, Pools, etc) are separated and
delivered by different features.

L1-3 Networking and Device Onboarding are delivered by Cloud Connectors that provide an abstracted
interface to BIG-IP Onboarding in different environments.

L4-7 service delivery is accomplished by:

• Declarative: Consuming F5 iApp templates from BIG-IP devices and creating a Service Catalog.

• Imperative: Consuming the iWorkflow REST Proxy to drive API calls to BIG-IP devices

The labs in the module will focus on the high level features in place to achieve full L1-7 automation. As
mentioned above, iApps are a key component of this toolchain.

In this Module we will focus on building a Service Catalog using the App Services iApp template you
learned about in Module 2. The focus in Module 2 was showing how to drive rich deployments, however,
a large amount of F5 Domain Specific Knowledge was still required to drive the deployments. From a
conceptual view iApp templates alone do not fully satisfy the requirement for a fully Declarative interface
because while the iApp template simplifies the underlying Imperative actions it does not allow the admin-
strator to build an Interface that minimizes or eliminates the need for Domain Specific Knowledge.

For example, we deployed a service that enabled HTTP Traffic Management with an iRule attached and
Profile Customizations. To the F5 administrator these are all very familar terms, however, to a consumer,
such as an Application Owner, the terms Virtual Server, iRule, Profile, etc. are foreign concepts. To solve
this problem iWorkflow allows the adminstrator to create a Service Catalog Template that is an Abstrac-
tion of the iApp templates input fields. By doing this the F5 administrator can create an interface tailored
to the use case and knowledge level of the CONSUMER rather than the ADMINSTRATOR, enabling
full featured and complex Layer 4-7 Application and Security services that are tailored to business need
and use case rather than the technical implementation. Additionally, the Service Abstraction acheived
when creating the Service Catalog enables the easy integration of F5 services with third-party tools and
methodologies such as DevOps.

85

2.5.1 Lab 3.1: iWorkflow Onboarding

Service Templates, Catalog and Deployments

Basics Templates Catalog Deployments

In this lab we will use the Runner, introduced in previous labs to complete the onboarding of the F5 iWork-
flow device. The onboarding process creates the initial configuration required to start creation of Service
Catalog Templates.

iWorkflow Overview

Before looking at the details of the onboarding process, lets discuss the new components iWorkflow intro-
duces to our toolchain.

Device Discovery

In order for iWorkflow to interact with a BIG-IP device it must be discovered by iWorkflow. The device
discovery process leverages the existing CMI Device Trust infrastructure on BIG-IP. Currently there is a
limitation that a single BIG-IP device can only be ‘discovered’ by ONE of iWorkflow or BIG-IQ CM at a time.
In this lab will we discover the existing BIG-IP devices from your lab environment.

Tenants & Connectors

iWorkflow implements a Tenant/Provider interface to enable abstracted deployment of L4-7 into various en-
vironment. In conjuction iWorkflow Connectors serve as the L1-3 Network and Device Onboarding automa-
tion component in the automation toolchain. In this lab we will create a ‘BIG-IP Connector’ for the BIG-IP
devices in the lab environment. This connector will then allow you to drive a fully automated deployment
from the iWorkflow Service Catalog.

iApp Templates

iWorkflow serves as an iApp Template Source-of-Truth for discovered BIG-IP devices. This allows an F5
administrator to manage iApp templates in a single place with iWorkflow installing required templates on
BIG-IP devices as required during service deployment.

Onboarding Process Overview

The process implemented in the Lab 3.1 - iWorkflow Onboarding folder of the Postman collection
is diagrammed below.

86

Note: The diagram below represents environment variables in blue. You can follow the lines on each
variable to understand which request populates the variable and how they are subsequently used.

87

Start iWorkflow Onboarding

Token-Based Authentication

Retrieve Authentication Token iwf_auth_token

Verify Authentication Works

Set Auth Token Timeout

Discover BIG-IP A

Discover BIG-IP B

Get Discovered Devices

Create iWorkflow Tenant &
BIG-IP Connector

Create Tenant User

Assign User to Tenant Admin Role

Create a BIG-IP Connector

Assign Connector to Tenant

Install App Services
Template on iWorkflow

Discover BIG-IP Devices

iwf_bigip_a_uuid

iwf_bigip_b_uuid

state=ACTIVE
No

Create iWorkflow Tenant

Yes

iwf_connector_uuid

Install App Services
iApp Template

iwf_appsvcs_name

End iWorkflow Onboarding

88

Task 1 - Onboard iWorkflow using Runner

In this task we will use the Runner to execute a series of requests contained in the Lab 3.1 - iWorkflow
Onboarding folder.

Perform the following steps to build the cluster:

1. Click the Runner button at the top right of your Postman window:

2. Select the F5 Programmability: Class 1 Collection then the Lab 3.1 - iWorkflow
Onboarding folder. Next, be sure the environment is set to F5 Programmability: Class 1:

89

90

3. Click the Run Lab 3.1 - iWor. . . button

4. The results window will now populate. You will see each request in the folder is sent and it’s associated
test results are displayed on the screen. Onboarding iWorkflow can take a few minutes. You can follow
the progress by scrolling down the results window.

5. Once the Run Summary button appears the folder has finished running. You should have 0 fail-
ures and the last item in the request list should be named Install App Services Template on
iWorkflow

6. At this point you can log into iWorkflow using Chrome at https://10.1.1.12 and admin/admin
credentials. Click Clouds and Services at the top of the window:

91

7. Browse the various panes to see what was created:

92

2.5.2 Lab 3.2: Create a Declarative Service Catalog

Service Templates, Catalog and Deployments

Basics Templates Catalog Deployments

In the introduction to this module we discussed the importance of using Service Templates to build a
Declarative Service Catalog. This lab will show to create a few examples of Service Templates (Tem-
plates). It’s important to understand that while the packaged examples used in this lab are great starting
points, you should use them as a starting point for creating your own Service Catalog that meets the
requirements of your environment.

We will explore the first example in depth so you can gain an understanding of how the templates are
structured. For the remaining templates you can just repeat the steps used with the first example.

The templates used in this lab all have a version number appended to the name (Example:
f5-http-lb-v1.0). It’s important that this pattern is followed in your environment. Explicitly version-
ing the templates allows for migration between template versions in a stable manner. Without versioning
any changes to the template could result in every deployment associated with the template being modified
at the same time. With versioning the application owner or F5 administrator can choose to either migrate
all deployments at the same time OR perform the migration on a per deployment manner.

Task 1 - Create the Service Templates

In this task we will use the Runner to quickly create our sample Service Templates. Perform the following
steps to complete this task:

1. Click the Runner button at the top right of your Postman window.

2. Select F5 Programmability: Class 1 → Lab 3.2 - Create a Declarative Service Catalog folder.

3. Select the F5 Programmability: Class 1 environment

4. Click the Run Lab 3.2 - Crea. . . button and wait for the run to complete. Verify no errors were
encountered.

5. Open the iWorkflow GUI in Chrome by navigating to https://10.1.1.12

6. Expand the Service Templates panel and verify all the templates have been created:

93

Task 2 - Explore the f5-http-lb-v1.0 Template

Now that we’ve created our Templates let’s review one of them in depth.

Perform the following steps to complete this task:

1. Open the f5-http-lb-v1.0 Template by double clicking it:

94

2. Let’s examine the Properties pane.

3. Select All in the Displayed Parameters section:

4. This pane shows detailed information about the Template such as:

• iApp Template Name & Version the Service Template is using

• The Connectors/Clouds that may use this template

• A control that toggles which Parameters are displayed in the pane

• The input Sections and Fields (collapsed in screeshot) for the iApp Template

95

5. In the Sections portion of the pane, find the Virtual Server Listener & Pool Configuration section. Click
the triangle to expand the section:

6. You can now see all the input fields associated with this section of the iApp template. These fields
are defined by the iApp Template itself. In the previous lab, when we installed the App Services iApp
Template, iWorkflow created a internal representation of the input fields used in the iApp template.
iWorkflow then allows you to create a template that:

• Define which fields are Tenant Editable, therefore exposed to the Tenant interface

• Setting a default value for the field

96

– If the field is NOT Tenant Editable the default value is sent during a Service Deployment,
however, the Tenant cannot see or modify the value

– If the field is Tenant Editable the default value is populated for the Tenant and the Tenant
may edit it during a Service Deployment

In the case of the fields shown in the example:

• pool__DefaultPoolIndex: A value of 0 will be sent during a deployment

• pool__MemberDefaultPort: Nothing will be sent

• pool__addr: Tenant will be allowed to populate the field with a value

• pool__mask: A value of 255.255.255.255 will be sent

• pool__port: Tenant will see 80 and can change the field

By combining different combinations of Default Values and Tenant Editable fields you can create
many different types of templates to match your requirements.

Note: The App Services iApp Template has been specifically designed to integrate with iWorkflow
and Automation use cases. While any iApp template that is properly versioned can be used with
iWorkflow, you should consider whether the template was designed for Automation use cases or not.
Many iApp templates were designed for a GUI or Wizard based interaction through the BIG-IP TMUI
GUI. As a result those templates may not present a good API interface.

7. In addition to simple text fields, iApp templates also support table based input. The App Services iApp
uses this capability to allow input of more complex data such as Pools, Pool Members and Layer 7
Routing Policies. iWorkflow allows you to have granular control over how the Tenant can interact with
a table. Let’s find the pool__Pools table and click the triangle to expand it:

Note: To accomodate screen size this screenshot does not show all the columns in the table.

97

The highlighted sections in the image above correspond to the capabilities in the list below:

• [1] Definition of the Min and Max number of rows in a table

– Example: Define a fixed number or limit for the number of Pools a Tenant can deploy

• [2] Default Values for each column in a table

– Example: Define a default Load Balancing Method for deployed Pools

• [3] Tenant Editable flag for each column in the table

– Example: Only allow the Tenant to control the Load Balancing Method and Name of a Pool,
while defaulting all other values.

• [4] Default Rows that auto-populate a desired input for the Tenant. Each row can have a No
Access, Read-Only or Write ACL applied.

– Example: Define a Service that allows URL Based Content Routing to only two pools.

* Define 2 Default Rows in the Pools table

* Set the Min & Max value to 2

8. Finally, to assist in designing a Tenant interface, iWorkflow allows you to preview what the Tenant UI
would look like for a Service Template. To view preview for click the Tenant Preview button:

98

9. The preview window shows how the Tenant UI would present the Service Template. As you can
see the interface is vastly simplified and only Tenant Editable fields are shown. Because the true
deployment details are filtered from the Tenant, the Service Deployment requires much less Domain
Specific Knowledge. Keep in mind that while the Tenant interface may be simple, you can leverage
advanced functionality in the Service Template.

Task 3 - Explore the Remaining Service Templates

Using the pattern in the last task explore the other Service Templates that were created earlier. A description
of each Service Template is included in the table below. In all cases the Template has been configured with
the appropriate Monitors, Profiles and Options for the use case.

Service Template Description
f5-http-lb-v1.0 HTTP Load Balancing to a Single Pool
f5-https-offload-v1.0 HTTPS Offload and Load Balancing to a Single Pool
f5-fasthttp-lb-v1.0 Performance-enhanced HTTP Load Balancing to a Single Pool
f5-fastl4-udp-lb-v1.0 Generic L4 TCP Load Balancing to a Single Pool
f5-fastl4-udp-lb-v1.0 Generic L4 UDP Load Balancing to a Single Pool
f5-http-url-routing-lb-v1.
0

HTTP Load Balancing with URL Based Content Routing to Multiple
Pools

f5-https-waf-lb-v1.0 HTTPS Offload, Web Application Firewall Protection and Load Balancing
to a Single Pool

99

2.5.3 Lab 3.3: Deploy L4-7 Services

Service Templates, Catalog and Deployments

Basics Templates Catalog Deployments

Up to this point we have spent a lot of time building our toolchain to create a Declarative Service Catalog.
We are now at the point where we can perform a Declarative, Abstracted Service Deployment using the
iWorkflow Tenant Service Catalog, Tenant API and optionally the built-in Tenant GUI.

As we did in the previous lab we will explore the first deployment in depth so you can implement a full
Service Lifecycle: Create, Read, Update and Delete (CRUD) operations. For the remaining deployments
you can just repeat the steps used with the first example.

Tenant Overview

iWorkflow Tenants allow Consumers to perform Service Lifecycle operations in an isolated environment.
All actions performed prior to this lab have been in what’s called the Provider space and, by nature, are
masked from Tenants unless specifically exposed. As a result of the Tenant isolation, each Tenant maintains
its own set of Users and Roles associated with those users, allowing each Tenant full control of the actions
Tenant Users can perform.

During our iWorkflow Onboarding process in Lab 3.1 we created a Tenant named MyTenant and an as-
sociated Tenant User with a username of tenant. Additionally we gave MyTenant access to the BIG-IP
Connector named BIG-IP A&B Connector:

100

This gives the tenant user the ability to perform CRUD operations on Service Deployments.

Note: Service Templates can also be assigned to specific Cloud Connectors, allowing you to restrict the
use of Templates to a specific Tenant and set of BIG-IP resources.

Task 1 - Login to the iWorkflow Tenant UI

iWorkflow provides a Tenant UI that can act as a simple self-service portal for Tenants. In this lab we’ll use
the Tenant UI to monitor the results of various actions we take via the iWorkflow Tenant API.

Perform the following steps to complete this task:

1. Open a new Chrome window/tab and connect to https://10.1.1.12

2. Use the MyTenant Tenant User credentials to login:

• Username: tenant

• Password: tenant

3. You will see a user interface that looks similar to the Provider UI, however, the access is limited
to Tenant specific objects. You can see a list of available Service Templates and Clouds with their
associated Connectors:

101

Task 2 - Authenticate to the iWorkflow Tenant API

As described above, the Tenant interfaces to iWorkflow maintain their own access control mechanisms. As
a result, when performing operations via the Tenant API you must authenticate with a Tenant User (tenant
in this case).

Perform the following steps to complete this task:

1. In Postman expand the Lab 3.3 - Deploy L4-7 Services folder in the collection

2. Click the Authenticate and Obtain Token for Tenant User request and examine the
JSON request Body. Notice that we are sending the credentials for the Tenant User (tenant). This
request will automatically populate the iwf_tenant_auth_token variable in the Postman environ-
ment so it can be used by subsequent requests.

3. Click the Send button on the Authenticate and Obtain Token for Tenant User request.
Check the Test Results tab to ensure the token was populated.

4. Click the Set Tenant Authentication Token Timeout request and click the Send button.
This request will increase the timeout value for the token so we can complete the lab without hav-
ing to re-authenticate.

Task 3 - Perform Service Lifecycle Operations

In this task we will perform CRUD operations on Service Deployments demonstrating a full Service Lifecycle
for a Tenant Service.

Create

Perform the following steps to complete this task:

102

1. Click the Deploy example-f5-http-lb Service request in the folder.

2. Examine the URI. Notice that the variable iwf_tenant_name is used to specify the Tenant we are
performing the operation on. In this case iwf_tenant_name is set to MyTenant in the Postman
environment:

3. Examine the JSON Request Body ; it contains the following data:

• Deployment name

• A URI Reference to the Service Template f5-http-lb-v1.0

• The input vars and tables for the deployment. These fields were marked Tenant Editable
in the Service Template

• A URI Reference to the Connector to use for deployment. This specifies which BIG-IP devices
will be used for this deployment

The data in the list above is higlighted below:

103

4. Click the Send button to Create the Service Deployment

5. Switch to the Chrome iWorkflow Tenant UI window. The example-f5-http-lb Service is now
present in the L4-L7 Services pane. Double click the Service and examine its properties. You can
compare the values in the UI to the JSON Request Body from the step above.

104

6. Open a Chrome window/tab to the BIG-IP A GUI at https://10.1.1.10 and login with admin/
admin credentials. Navigate to iApps → Application Services. Select example-f5-http-lb from
the list of deployed services and examine the Components of the deployed service:

Update

Perform the following steps to complete this task:

1. Click the Modify example-f5-http-lb Service request in the folder.

105

2. We will send a PUT request to the Resource URI for the existing deployment and add a Pool Member
as shown in the JSON Request Body :

3. Click the Send button to Update the Service Deployment

4. Update the iWorkflow Tenant UI and notice that the Service has been updated:

106

5. Update the BIG-IP GUI and notice that the Components tree has been updated:

107

Read

Perform the following steps to complete this task:

1. Click the Get example-f5-http-lb Service request in the folder.

2. We will send a GET request to the Resource URI for the existing deployment.

3. Click the Send button to Read the Service Deployment

4. Examine the JSON Response Body to see the state of the current Service Deployment:

Delete

Perform the following steps to complete this task:

1. Click the Delete example-f5-http-lb Service request in the folder.

2. We will send a DELETE request to the Resource URI for the existing deployment.

3. Click the Send button to Delete the Service Deployment

108

4. Update the iWorkflow Tenant UI and verify that the Service has been deleted:

5. In the BIG-IP GUI navigate to iApps → Application Services and verify the service was deleted.

109

Task 3 - Deploy Additional Services

Examples Create requests are included in the Lab 3.3 - Deploy L4-7 Services folder. For the
remaining services refer to the table below to see which ones apply most to your specific use cases. You
can repeat the steps in Task 2 for the additional services by modifying the requests as needed.

Service Name Description
f5-http-lb HTTP Load Balancing to a Single Pool
f5-https-offload HTTPS Offload and Load Balancing to a Single Pool
f5-fasthttp-lb Performance-enhanced HTTP Load Balancing to a Single Pool
f5-fastl4-udp-lb Generic L4 TCP Load Balancing to a Single Pool
f5-fastl4-udp-lb Generic L4 UDP Load Balancing to a Single Pool
f5-http-url-routing-lb HTTP Load Balancing with URL Based Content Routing to Multiple

Pools
f5-https-waf-lb HTTPS Offload, Web Application Firewall Protection and Load Balancing

to a Single Pool

2.5.4 Lab 3.4: iWorkflow REST Proxy

Service Templates, Catalog and Deployments

Basics Templates Catalog Deployments

110

While the focus so far has been on building Declarative Interfaces with iWorkflow, it’s important to note
iWorkflow can also help simplify Imperative operations to BIG-IP devices when needed.

iWorkflow includes a REST proxy that allows pass-through of REST requests to devices discoverd on
iWorkflow. The REST proxy feature allows customers to simplify Imperative Automation by:

• Providing a centralized API endpoint for BIG-IP infrastructure

– No need to communicate with individual BIG-IP devices, only with iWorkflow

• Simplified authentication

– Strong authentication can be implemented at iWorkflow rather than on each BIG-IP

• Simplified RBAC

– RBAC can be implemented at iWorkflow for all devices rather than on individual devices in the
environment

The REST proxy works by passing data sent to a specific URL through to the BIG-IP device. The root URL
for a particular devices REST proxy is:

/mgmt/shared/resolver/device-groups/cm-cloud-managed-devices/devices/
<device_uuid>/rest-proxy/

Any URL segments included after .../rest-proxy/ are forwarded unaltered to the BIG-IP device. Query
parameters (e.g. ?expandSubcollections=true) are also passed unaltered along with the request type
and request body.

Task 1 - Perform REST operations via the REST Proxy

In this task we will perform a sample CRUD operation utilizing the REST Proxy. The intent of this task is to
show the basic mechanism used to perform these tasks. Simply changing the URL to include the iWorkflow
REST Proxy root for that device could easily change all the Imperative operations we have completed in
this lab to use the REST Proxy.

Perform the following steps to complete this task:

1. Expand the Lab 3.4 - iWorkflow REST Proxy folder in the Postman collection.

2. Click the Step 1: Create pool on BIG-IP A. Examine the request type, URL and JSON
body. Essentially we are performing a POST to the ‘/mgmt/tm/ltm/pool’ collection on BIG-IP A. The
last part of the URL includes this URI path (the part after .../rest-proxy/). The JSON body and
all other parameters are passed unaltered. Also, notice that we are still using our iWorkflow Token to
Authenticate, not the BIG-IP one in the Headers tab.

111

3. Click the Send button and examine the response.

4. Complete Steps 2-5 for the remaining items in the Lab 2.5 - iWorkflow REST Proxy collection.
Examine each request carefully so you understand what is happening.

2.6 Conclusion

Class 1: Introduction to Automation & Orchestration

AppDev, DevOps, NetOps iWorkflow Service Templates,
Catalog & Deployment

EnvironmentBIG-IPiApp Templates
& Deployments

REST Basics

Authentication

Global Settings

Networking

Clustering

Transactions

iApp Basics

iApp Templates

iApp Deployments

Basics

Templates

Catalog

Deployments

In this class we learned the base concepts and skills required to effectively automate the F5 BIG-IP platform.
The diagram above shows a high-level view of the different components to this base level of knowledge. In
subsequent classes we will expand on the core concepts and knowledge learned in this class.

This content has been created with a DevOps methodology and fully Continuous Toolchain. All content
contained here is sourced from the following GitHub repository:

https://github.com/f5devcentral/f5-automation-labs/

Bug Reports and Requests for Enhancement are handled in two ways:

• Fork the Github Repo, fix or enhance as required, and submit a Pull Request

– https://help.github.com/articles/creating-a-pull-request-from-a-fork/

• Open an Issue within the repository.

112

https://github.com/f5devcentral/f5-automation-labs/
https://help.github.com/articles/creating-a-pull-request-from-a-fork/
https://github.com/f5devcentral/f5-automation-labs/issues

Lastly, this content would not be possible without the contributions from many F5 Employees, Partners, and
Customers. A full list of contributors to this content can be found at:

https://github.com/f5devcentral/f5-automation-labs/graphs/contributors

113

https://github.com/f5devcentral/f5-automation-labs/graphs/contributors

114

3
Class 2: Building Continuous Delivery Pipelines

This class covers the following topics:

• Continuous Integration(CI) and Continuous Delivery(CD) Concepts

• F5 Automation Toolkits:

– F5-Super-NetOps-Container

– F5 Postman Collections and f5-postman-workflows extensions

– F5 f5-newman-wrapper for Automating Workflows

• Building CI/CD Pipelines with Jenkins

• Team Collaboration with Automated Slack Notifications

Expected time to complete: 3 hours

3.1 Module 1: f5-super-netops-container Toolkit

In this module, we will explore how to use the f5-super-netops-container toolkit to easily integrate various
F5 Automation, Orchestration, Super Netops and DevOps tools, along with framework technologies.

The f5-super-netops-container is meant to provide a simple way for users to quickly duplicate a standard
automation and orchestration environment in your local machine/lab environment. The container is contin-
uously updated to include the latest tools and documentation.

The labs in this module will show you how to install the f5-super-netops-container image, start it in your
local environment and access various tools and documentation.

To install the f5-super-netops-container, your system must support running Docker Community Edition (CE).
Please refer to https://docs.docker.com/engine/installation/#platform-support-matrix for more information.

This toolkit is fully open source and is on GitHub at https://github.com/f5devcentral/
f5-super-netops-container

3.1.1 Lab 1.1: Install Docker Community Edition (CE)

To use the f5-super-netops-container you first need to install Docker Community Edition on your system.

115

https://docs.docker.com/engine/installation/#platform-support-matrix
https://github.com/f5devcentral/f5-super-netops-container
https://github.com/f5devcentral/f5-super-netops-container

Note: If you are using an F5 provided lab environment, RDP to the Windows Jumphost from there you
can access the already installed Docker CE service on the host named ‘Docker Server’. SSH to the Docker
Sercer via Putty to that host a execute all docker commands there.

Task 1 - Install Docker CE

Note: User Credentials to Docker Server: User root and Password default

Please follow the instructions at https://docs.docker.com/engine/installation/ to install Docker CE.

Once you have completely installed, and successfully run the hello-world test you can continue to the
next lab.

To test your setup with the hello-world container, you just need to run the following command

docker run --rm hello-world

Example output:

$ docker run --rm hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
78445dd45222: Pull complete
Digest: sha256:c5515758d4c5e1e838e9cd307f6c6a0d620b5e07e6f927b07d05f6d12a1ac8d7
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the

executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it

to your terminal.

Share images, automate workflows, and more with a free Docker ID:
https://cloud.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

Note: The --rm option will delete the container as soon as it stops running.

If you see this message: Cannot connect to the Docker daemon. Is the docker daemon running on
this host?, it is likely that you don’t have enough privileges with your user, try to use sudo when executing
docker commands.

If you want to remove the hello-world container, you can run the command sudo docker rmi
hello-world If your container is running, you cannot remove the image. You can issue the following
commands in that case (this will stop ALL your container instances): sudo docker stop $(docker ps
-aq)

116

https://docs.docker.com/engine/installation/

3.1.2 Lab 1.2: Obtain & Start the f5-super-netops-container Image

In this lab we will use the docker cli tools to obtain and start the f5-super-netops-container image.

Task 1 - Obtain and verfiy the container image

Perform the following steps to complete this task:

1. Open a Command Prompt

Note: If you are using an F5 provided lab environment please SSH to the ‘Docker Server’ host and execute
the following commands.

1. Execute docker pull f5devcentral/f5-super-netops-container:jenkins

Example output:

$ docker pull f5devcentral/f5-super-netops-container:jenkins
jenkins: Pulling from f5devcentral/f5-super-netops-container
019300c8a437: Pull complete
2d6b38b56ae7: Pull complete
5fab9174d5b4: Pull complete
fc0251c85d81: Pull complete
d5c1476cba25: Pull complete
3f563aeb530f: Pull complete
56717b902584: Pull complete
3a973f5ee17d: Pull complete
68d52f474d41: Pull complete
604d6366bf0b: Pull complete
b3b4184aef22: Pull complete
2cebe1f5955c: Pull complete
2b7bce9d0d9e: Pull complete
259f696f7766: Pull complete
6d5f2e57c5b3: Pull complete
985706ad6d05: Pull complete
a29f68892227: Pull complete
7420ee096abd: Pull complete
0907797bbe90: Pull complete
5b8f2518bf01: Pull complete
2940be145e35: Pull complete
f2cb35cbf665: Pull complete
5cdfa1779954: Pull complete
61c1367b68d8: Pull complete
5bcd8c5223bb: Pull complete
b0defdb83b82: Pull complete
Digest: sha256:27563f98bf58c9d26eb5989acaf540a9ad7fb1806e4a4c373ad28769ebe63ef4
Status: Downloaded newer image for f5devcentral/f5-super-netops-container:jenkins

2. Execute docker images

Example output:

$ docker images
REPOSITORY TAG IMAGE ID
→˓CREATED SIZE
f5devcentral/f5-super-netops-container jenkins b71fc40407e4
→˓2 weeks ago 490MB

117

Task 2 - Start the container image

To start using the container we will execute the command:

1. Execute docker run -p 8080:80 -p 2222:22 -p 10000:8080 --rm -it -e
SNOPS_GH_BRANCH=master f5devcentral/f5-super-netops-container:jenkins

Note: The image requires Internet connectivity to download the latest versions of tools and documentation.
Please ensure you have proper connectivity from your host prior to starting the image. If you need to use a
proxy please refer to the documentation at https://docs.docker.com

The image will now start and load resources from the Internet. This process may take a while depending on
the speed of your connection. When the startup process is complete you will be presented in the root user
prompt. You can interact with the image with standard Linux commands. In the next lab we will connect to
the image via SSH and HTTP.

The -p option publishes a L4 port from the container to the host. For example the -p 8080:80 option will
redirect port 8080 on the host system to port 80 in the container.

The -it option will make the session interactive and allocate a pseudo-TTY

The -e option will specify a Github Branch, in this case we are pulling from master

The f5devcentral/f5-super-netops-container:jenkins option is the name associated with the
image we obtained in Task 1.

Example startup output:

container:jenkins
[s6-init] making user provided files available at /var/run/s6/etc...exited 0.
[s6-init] ensuring user provided files have correct perms...exited 0.
[fix-attrs.d] applying ownership & permissions fixes...
[fix-attrs.d] done.
[cont-init.d] executing container initialization scripts...
[cont-init.d] done.
[services.d] starting services
[services.d] done.
[environment] SNOPS_HOST_SSH=2222
[environment] SNOPS_REPO=https://github.com/f5devcentral/f5-super-netops-container.git
[environment] SNOPS_AUTOCLONE=1
[environment] SNOPS_HOST_IP=172.17.0.2
[environment] SNOPS_ISALIVE=1
[environment] SNOPS_GIT_HOST=github.com
[environment] SNOPS_REVEALJS_DEV=0
[environment] SNOPS_HOST_HTTP=8080
[environment] SNOPS_IMAGE=jenkins
[environment] SNOPS_GH_BRANCH=master
Reticulating splines...
Becoming self-aware...
[cloneGitRepos] Retrieving repository list from https://github.com/f5devcentral/f5-
→˓super-netops-container.git#develop
[updateRepos] Processing /tmp/snops-repo/images/jenkins/fs/etc/snopsrepo.d/jenkins.
→˓json
[updateRepos] Processing /tmp/snops-repo/images/base/fs/etc/snopsrepo.d/base.json
[updateRepos] Processing /tmp/user_repos.json
[cloneGitRepos] Loading repositories from /home/snops/repos.json
[cloneGitRepos] Found 7 repositories to clone...
[cloneGitRepos][1/7] Cloning f5-sphinx-theme#master from https://github.com/
→˓f5devcentral/f5-sphinx-theme.git
[cloneGitRepos][1/7] Installing f5-sphinx-theme#master

118

https://docs.docker.com

[cloneGitRepos][2/7] Cloning f5-super-netops-container#develop from https://github.
→˓com/f5devcentral/f5-super-netops-container.git
[cloneGitRepos][2/7] Installing f5-super-netops-container#develop
[cloneGitRepos][3/7] Cloning f5-application-services-integration-iApp#develop from
→˓https://github.com/F5Networks/f5-application-services-integration-iApp.git
[cloneGitRepos][3/7] Installing f5-application-services-integration-iApp#develop
[cloneGitRepos][4/7] Cloning f5-postman-workflows#develop from https://github.com/
→˓0xHiteshPatel/f5-postman-workflows.git
[cloneGitRepos][4/7] Installing f5-postman-workflows#develop
[cloneGitRepos][5/7] Cloning f5-automation-labs#master from https://github.com/
→˓f5devcentral/f5-automation-labs.git
[cloneGitRepos][5/7] Installing f5-automation-labs#master
[cloneGitRepos][6/7] Cloning ultimate-vimrc#master from https://github.com/amix/vimrc.
→˓git
[cloneGitRepos][6/7] Installing ultimate-vimrc#master
[cloneGitRepos][7/7] Cloning reveal-js#master from https://github.com/hakimel/reveal.
→˓js.git
[cloneGitRepos][7/7] Installing reveal-js#master

.----------.
/ /
/ ______.'

.. / /_
.' .._/ '''--.
| ' '___ `.

__| |__ `'. |
|__ __|) |

| |-' /
| | \ _..'`
| | '------'''
| | _
|_| | |

___ _ _ _ __ ___ _ __ _ __ ___| |_ ___ _ __ ___
/ __| | | | '_ \ / _ \ '__| ______ | '_ \ / _ \ __/ _ \| '_ \/ __|
__ \ |_| | |_) | __/ | |______|| | | | __/ || (_) | |_) __ \
|___/__,_| .__/ ___|_| |_| |_|___|_____/| .__/|___/

| | | |
|_| |_|

Welcome to the f5-super-netops-container. This image has the following
services running:

SSH tcp/22
HTTP tcp/80

To access these services you may need to remap ports on your host to the
local container using the command:

docker run -p 8080:80 -p 2222:22 -it f5devcentral/f5-super-netops-container:base

From the HOST perspective, this results in:

localhost:2222 -> f5-super-netops-container:22
localhost:8080 -> f5-super-netops-container:80

You can then connect using the following:

HTTP: http://localhost:8080
SSH: ssh -p 2222 snops@localhost

119

Default Credentials:

snops/default
root/default

Go forth and automate!

(you can now detach by using Ctrl+P+Q)

[root@f5-super-netops] [/] #

Task 3 - Detach/Re-attach the Container

When running containers it’s important to understand that it will exit if the foreground process (in this case
the shell) exits. For example, if you typed the exit command in the running container it will shutdown.
In order to avoid this you should detach from the container once it has completed booting. You can still
perform functions by using SSH to access the container as explained in the next lab.

Its likely that the installation of the f5-super-netops-container will not be on a localhost while running in a
large environment, the steps below show how you can leave this instance running as a background process,
if needed.

Detach the Container

1. Issue a Ctrl+p+q in the running TTY.

Example output:

[root@f5-super-netops] [/] #
[root@f5-super-netops] [/] #
[root@f5-super-netops] [/] # <enter Ctrl+p+q>
hostname:~ user$

2. Verify the container is still running by entering docker ps

Example output:

hostname:~ user$ docker ps
$ docker ps
CONTAINER ID IMAGE
→˓COMMAND CREATED STATUS PORTS
→˓

→˓NAMES
4cf75944bfbc f5devcentral/f5-super-netops-container:jenkins "/
→˓init /snopsboot/..." 2 minutes ago Up 2 minutes 8000/tcp, 50000/
→˓tcp, 0.0.0.0:2222->22/tcp, 0.0.0.0:8080->80/tcp, 0.0.0.0:10000->8080/tcp
→˓loving_montalcini

Re-attach the Container

1. Execute docker ps

120

Example output:

hostname:~ user$ docker ps
$ docker ps
CONTAINER ID IMAGE
→˓COMMAND CREATED STATUS PORTS
→˓

→˓NAMES
4cf75944bfbc f5devcentral/f5-super-netops-container:jenkins "/
→˓init /snopsboot/..." 2 minutes ago Up 2 minutes 8000/tcp, 50000/
→˓tcp, 0.0.0.0:2222->22/tcp, 0.0.0.0:8080->80/tcp, 0.0.0.0:10000->8080/tcp
→˓loving_montalcini
|------------|
^- YOUR CONTAINER ID

2. Copy the value under the CONTAINER ID column that correspond to the f5devcentral/f5-super-
netops-container:jenkins image.

3. Execute docker attach <container_id>

4. You may have to hit <Enter> twice to display the command prompt

5. Detach the container again by entering <Ctrl+p+q>

3.1.3 Lab 1.3: Connect to f5-super-netops-container

In the previous lab we started the container image and were presented with a root user terminal. In order
to use the container and its associated tools properly we will connect via SSH and/or HTTP.

Task 1 - Connect via SSH

To connect to the image via SSH we must use the published port specified in the docker run command.
To review the command used to start the container was:

docker run -p 8080:80 -p 2222:22 -p 10000:8080 --rm -it -e
SNOPS_GH_BRANCH=master f5devcentral/f5-super-netops-container:jenkins

This will publish the standard SSH service on TCP/22 to TCP/2222 on the Docker host. In the case of the
SSH service the following mapping applies:

localhost:2222 -> f5-super-netops-container:22

Note: If you are using an F5 provided lab environment please use the SSH client and connect to the
‘f5-super-netops-container SSH’ item

The container includes the snops user with a password of default. If you are not using the F5 Lab
environment connect to the container execute the following command or it’s OS-specific equivalent:

ssh -p 2222 snops@localhost

Note: The host SSH keys for our environment are regenerated each time the container boots, you may
receive an error when trying to connect indicating the host key has changed. This error is safe to ignore in
this case and can be resolved by removing the key from ~/.ssh/known_hosts. You can also configure
your local SSH config by adding the following to ~/.ssh/config:

121

Host localhost
Port 2222
StrictHostKeyChecking no
UserKnownHostsFile /dev/null

Example output of connecting to the container:

$ ssh -p 2222 snops@localhost
Warning: Permanently added '[localhost]:2222' (ECDSA) to the list of known hosts.
snops@localhost's password:

.----------.
/ /
/ ______.'

.. / /_
.' .._/ '''--.
| ' '___ `.

__| |__ `'. |
|__ __|) |

| |-' /
| | \ _..'`
| | '------'''
| | _
|_| | |

___ _ _ _ __ ___ _ __ _ __ ___| |_ ___ _ __ ___
/ __| | | | '_ \ / _ \ '__| ______ | '_ \ / _ \ __/ _ \| '_ \/ __|
__ \ |_| | |_) | __/ | |______|| | | | __/ || (_) | |_) __ \
|___/__,_| .__/ ___|_| |_| |_|___|_____/| .__/|___/

| | | |
|_| |_|

Welcome to the f5-super-netops-container. This image has the following
services running:

SSH tcp/22
HTTP tcp/80

To access these services you may need to remap ports on your host to the
local container using the command:

docker run -p 8080:80 -p 2222:22 -it f5devcentral/f5-super-netops-container:base

From the HOST perspective, this results in:

localhost:2222 -> f5-super-netops-container:22
localhost:8080 -> f5-super-netops-container:80

You can then connect using the following:

HTTP: http://localhost:8080
SSH: ssh -p 2222 snops@localhost

Default Credentials:

snops/default
root/default

Go forth and automate!

122

[snops@f5-super-netops] [~] $

Task 2 - Connect via HTTP

To connect to the image via HTTP we use the published port specified in the docker run command. To
review the command used to start the container was:

docker run -p 8080:80 -p 2222:22 -p 10000:8080 --rm -it -e
SNOPS_GH_BRANCH=master f5devcentral/f5-super-netops-container:jenkins

This will publish the standard HTTP service on TCP/80 to TCP/8080 on the Docker host. In the case of
the HTTP service the following mapping applies:

localhost:8080 -> f5-super-netops-container:80

Note: If you are using an F5 provided lab environment please use the browser and click the ‘Super Netops
Container’ bookmark.

To connect outside of the F5 Lab environment via HTTP, open a web browser and enter the URL:

http://(YourDockerSever):8080/start

You should see a page like this:

Task 3 - Connect via Jenkins

To connect to the image via Jenkins we use the published port specified in the docker run command. To
review the command used to start the container was:

docker run -p 8080:80 -p 2222:22 -p 10000:8080 --rm -it -e
SNOPS_GH_BRANCH=master f5devcentral/f5-super-netops-container:jenkins

This will publish the standard Jenkins service on TCP/8080 to TCP/10000 on the Docker host. In the case
of the Jenkins service the following mapping applies:

123

10.1.1.8:10000 -> f5-super-netops-container:8080

Note: If you are using an F5 provided lab environment please use the browser and click the ‘Jenkins’
bookmark.

To connect via HTTP open a web browser and enter the URL:

http://(YourDockerSever):10000

You should see a page like this:

3.2 Module 2: F5 f5-postman-workflows & f5-newman-wrapper

In the previous Class you may have found the tasks associated with checking various response values and
populating environment variables very tedious. In addition to being tedious, these tasks are not fundamen-
tally automatable due to the requirement for human interaction.

In order to assist users with automating the F5 BIG-IP platform we have developed a set of tools that can
be used with the Postman REST Client (http://getpostman.com). The purpose of the tools are:

• f5-postman-workflows

– Provide re-usable JavaScript functions that ease testing of API responses and populating envi-
ronment variables

– Implement a delay-based polling mechanism

• f5-newman-wrapper

– Allow users to easily assemble Postman collections into workflows

– Enabled integration with third-party tools such as Ansible, Chef & Puppet

This framework allows collection developers to create automatable collections that include full testing of
response values, population of environment variables to establish chains of requests and time-based polling
to allow long-lived API processes time to complete.

124

http://getpostman.com

Users can then interact with these collections via the Postman GUI client, run the collections with the
Postman Runner or the Newman CLI client.

This lab module will walk you through using the tools. If you are interested in developing collections us-
ing the f5-postman-workflows framework please visit the official GitHub repository at https://github.com/
0xHiteshPatel/f5-postman-workflows

3.2.1 Lab 2.1: Install the f5-postman-workflows Framework

In this lab you will walk through installing the f5-postman-workflows framework into the Postman REST
Client.

Task 1 - Import the f5-postman-workflows Postman Collection

In this task you will Import a Postman Collection that contains Installation helpers, Examples and a auto-
mated Test Framework. The collection is installed from the f5-postman-workflows GitHub repository.

Perform the following steps to complete this task:

1. Open the Postman Client on your jumphost by clicking the icon

2. Click the ‘Import’ button in the top left of the Postman window

3. Click the ‘Import from Link’ tab. Paste the following URL into the text box and click ‘Import’

https://raw.githubusercontent.com/0xHiteshPatel/f5-postman-workflows/
master/F5_Postman_Workflows.postman_collection.json

4. You should now see a collection named F5_Postman_Workflows in your Postman Collections side-
bar, in some cases the Collections dont appear until Postman has been closed an relaunched.

Task 2 - Install f5-postman-workflows into your Postman Client

To utilize the helper functions the framework includes, we must install those functions into the Postman
Client. The installation helpers perform the following tasks:

1. Determine the most current version of the framework

2. Dynamically minify the JavaScript code from the f5-postman-workflows GitHub repository using
Google’s Closure Compiler

3. Install the minified JS code into a Postman Global Variable

4. Set a number of Global variables that allow you to configure various options

To install the framework complete the following tasks:

1. Open the F5_Postman_Workflows collection

2. Open the Install folder

3. Select the Check f5-postman-workflows Version item and click ‘Send’

4. Examine the ‘Tests’ portion of the RESPONSE:

125

https://github.com/0xHiteshPatel/f5-postman-workflows
https://github.com/0xHiteshPatel/f5-postman-workflows

5. Select the Install/Upgrade f5-postman-workflows item and click ‘Send’

6. Examine the ‘Tests’ again and ensure that Installation was successful:

7. Click the ‘Eye’ button in the top right of the Postman window and examine the Global variables that
have been populated

126

The f5-postman-workflows framework is now installed in your Postman client.

3.2.2 Lab 2.2: Manually Execute a Workflow

In this lab we will walk through how to obtain two collections, and then we’ll use the f5-postman-workflows
framework to execute a simple workflow using the Postman GUI client. The f5-postman-workflows GitHub
repository is continually updated with new collections that can be used as is, or customized, to automate
the F5 platform. Additionally, the f5-super-netops-container automatically downloads these and other tools
so users can rapidly execute workflows in their environments.

127

Postman collections also serve as a reference example of how various tasks can be accomplished using
an Imperative process. When executing a collection you are actually providing a Declarative input to an
Imperative process.

Collections are self-documenting, and we will explore how to access the included documentation to assem-
ble a workflow from beginning to end. In the next lab we will use this base knowledge to create workflows as
JSON templates that can be executed by the f5-newman-wrapper on the f5-super-netops-container image
(or any system that has Newman installed)

Task 1 - Import and Explore BIG-IP Collections

First, we will import two collections to Postman using the same steps in the previous labs. The two dif-
ferent collections will allow us to perform REST API Authentication to BIG-IP devices and then execute
Operational actions on the BIG-IP device. We are stitching together two Imperative process’s.

Execute the following steps to complete this task:

1. Click Import -> Import from Link and import both of these collection URLs:

• https://raw.githubusercontent.com/0xHiteshPatel/f5-postman-workflows/
master/collections/BIG_IP/BIGIP_API_Authentication.postman_collection.
json

• https://raw.githubusercontent.com/0xHiteshPatel/f5-postman-workflows/
master/collections/BIG_IP/BIGIP_Operational_Workflows.
postman_collection.json

2. You should now have two additional Collections in the sidebar:

• BIGIP_API_Authentication

• BIGIP_Operational_Workflows

3. Expand the BIGIP_API_Authentication collection. Within the collection you will see one folder
named 1_Authenticate. Folders are used to organize various workflows within a collection. In this
case this collection performs exactly one task, authentication, therefore one folder is present.

4. Expand the 1_Authenticate folder. Notice there are three requests in the folder. These three
requests will be executed in a synchronous manner (one-after-another).

5. Click the ... icon on the 1_Authenticate folder, then click Edit

128

6. In the opened window you will see documentation explaining what the requests in this folder accom-
plish. Additionally you will see a series of Input and Output variables. Unless marked otherwise it is
assumed that all Input variables are required. In this case the bigip_token_timeout variable is
optional.

Folders may also contain output variables that are set to pass data between requests in different
collections (A Waterfall). In this case the output variable is named bigip_token and contains the
authentication token that can be sent in the X-F5-Auth-Token HTTP header to perform authentica-
tion.

7. Close the window by clicking ‘Cancel’

8. Repeat the steps above and explore the BIGIP_Operational_Workflows collection, specifically
the 4A_Get_BIGIP_Version folder

Task 2 - Manually Chain Folders into a Workflow

In this task we will explore how to chain two folders together and manually execute a workflow. This example
is simple, but should help illustrate how we can use folders as building blocks that can be assembled or
chained together to construct a workflow.

We will use the 1_Authenticate folder in the BIGIP_API_Authentication collec-
tion and then pass the authentication token to the 4A_Get_BIGIP_Version folder in the
BIGIP_Operational_Workflows collection.

Execute the following steps to complete this task:

1. Create a new Postman environment by clicking the Gear icon -> Manage Environments -> Add.

2. Name the environment Lab 2.2 and populate the following key/value pairs:

• bigip_mgmt: 10.1.1.4

• bigip_username: admin

• bigip_password: admin

3. Click the ‘Add’ button, then close the ‘Manage Environments’ window.

129

4. Select the Lab 2.2 environment:

The preceding steps configured the Input Variables required for all the folders that comprise our workflow.
We will now manually execute all the requests in the folders.

1. Expand the BIGIP_API_Authentication -> 1_Authenticate folder.

2. Select the Authenticate and Obtain Token item and click Send

3. Examine the Tests in the response portion of the request. All the tests should be passing. Addition-
ally you should see a test similar to:

[Populate Variable] bigip_token=....

These test items and their corresponding actions (populating a variable in this case) are generated by
the f5-postman-workflows framework.

4. Examine your Postman Environment variables and confirm that the bigip_token variable is present
and populated.

130

5. Select the Verify Authentication Works request in the folder and click ‘Send’. Examine the
Tests and ensure they are all passing

6. Select the Set Authentication Token Timeout request, click Send and verify all Tests pass.

At this point we have successfully authenticated to our device and stored the authentication token in the
bigip_token environment variable. We will now execute a request in a different collection and folder that
uses the bigip_token variable value to authenticate and perform its actions.

1. Expand the BIGIP_Operational_Workflows -> 4A_Get_BIGIP_Version folder.

2. Click the Get Software Version request.

3. Click the ‘Headers’ tab. Notice that the value for the X-F5-Auth-Token header is populated with the
bigip_token variable value.

Note: Postman uses the {{variable_name}} syntax to perform variable value substitution.

131

4. Click ‘Send’ to send the request. Examine the Tests and ensure all tests have passed.

5. Examine your environment variables and note that the bigip_version and bigip_build variables
are now populated.

While the example above was simple, it should show how we can chain together different collections and
folders to assemble custom workflows. The key concepts to understand are:

• The f5-postman-workflows framework and collection test-code performs unit tests on the response
data, and verifies the request executed successfully.

• The framework also populates Output Variables as documented so they can be used in subsequent
requests as Inputs to assemble a workflow

Next, we will explore how to use this base knowledge to assemble various collections and folders into
workflows using Newman and the f5-newman-wrapper.

3.2.3 Lab 2.3: f5-newman-wrapper Introduction

As shown in the previous lab, we can manually execute collections and folders using the Postman GUI to
achieve end results on BIG-IP devices. While this capability is important in a test/prototyping phase, we
need to ensure we can execute these manual steps as an automated process.

To achieve this goal we can use the f5-newman-wrapper tool. This tool allows a user to specify a workflow
in a JSON formatted file, this includes Input Variables, the collections and folders, and executes various
output options to provide feedback and run details in a programmatic fashion.

The core element of a workflow that can be executed by f5-newman-wrapper is a JSON formatted input
file. In this lab we will introduce the file format.

Task 1 - Explore the workflow JSON format

To introduce the format of the workflow file we will use an example that recreates the simple workflow we
executed manually in the previous lab. We will explore the file in sections followed by showing the whole
file.

132

Define Name and Description

1 {
2 "name":"Wrapper_Demo_1",
3 "description":"Execute a chained workflow that authenticates to a BIG-IP and

→˓retrieves it's software version"
4 }

Define Global Settings for the Run

This section defines how f5-newman-wrapper will run this workflow. The attributes are explained in the table
below.

1 {
2 "globalEnvVars":"../framework/f5-postman-workflows.postman_globals.json",
3 "globalOptions": {
4 "insecure":true,
5 "reporters":["cli"]
6 },
7 "saveEnvVars":true,
8 "outputFile":"Wrapper_Demo_1-run.json",
9 "envOutputFile":"Wrapper_Demo_1-env.json"

10 }

Attribute Description
globalEnvVars This is the file that contains the Global environment variables used by Newman.

This file is generated by the f5-postman-workflows build scripts and contains the
same global variables as we saw in the previous lab that installed the framework
into the Postman GUI client

globalOptions Specify the global options for newman. Available options are documented at: https:
//github.com/postmanlabs/newman#api-reference

Note: Removing the cli option from the reporters array will disable verbose
CLI output

saveEnvVars Save the environment variables at the end of the run to a file
outputFile The file to save the run details to.
envOutputFile The file to save the environment variables at the end of the run to.

Define Input Variables

This section specifies the Input Variables for the workflow. The name globalVars conveys that the vari-
ables defined here will be present for each request in the defined workflow (the global scope from a workflow
perspective). Variables can also be defined within each item in a workflow (the local scope from a item per-
spective). In the case of a global and local variable that is named identically, the local scope variable will
take precedence.

1 {
2 "globalVars": {
3 "bigip_mgmt": "10.1.1.4",

133

https://github.com/postmanlabs/newman#api-reference
https://github.com/postmanlabs/newman#api-reference

4 "bigip_username":"admin",
5 "bigip_password":"admin"
6 }
7 }

Define the Workflow Collections and Ordering

This section defines the workflow and collections and folders that it is comprised of. The workflow attribute
is an ordered array that contains objects defining each collection and folder to run.

1 {
2 "workflow": [
3 {
4 "name":"Authenticate to BIG-IP",
5 "options": {
6 "collection":".. /collections/BIG_IP/BIGIP_API_Authentication.postman_

→˓collection.json",
7 "folder":"1_Authenticate"
8 }
9 },

10 {
11 "name":"Get BIG-IP Software Version",
12 "options": {
13 "collection":"../collections/BIG_IP/BIGIP_Operational_Workflows.

→˓postman_collection.json",
14 "folder":"4A_Get_BIGIP_Version"
15 }
16 }
17]
18 }

Lets look at the item in the workflow that performs authentication:

1 {
2 "name":"Authenticate to BIG-IP",
3 "options": {
4 "collection":".. /collections/BIG_IP/BIGIP_API_

→˓Authentication.postman_collection.json",
5 "folder":"1_Authenticate"
6 }
7 }

The name attribute specifies the name for this item. The options object specifies the parameters used
to execute this particular item. In our case the collection attribute refers to the file containing the
BIGIP_API_Authentication collection. The folder attribute specifies the name of the folder to run in
the collection.

By default all output variables from a collection or folder are passed to the next item in the workflow. This
allows us to chain collections together as needed to build workflows.

Final Workflow JSON

1 {
2 "name":"Wrapper_Demo_1",

134

3 "description":"Execute a chained workflow that authenticates to a BIG-IP
→˓and retrieves it's software version",

4 "globalEnvVars":"../framework/f5-postman-workflows.postman_globals.json",
5 "globalOptions": {
6 "insecure":true,
7 "reporters":["cli"]
8 },
9 "globalVars": {

10 "bigip_mgmt": "10.1.1.4",
11 "bigip_username":"admin",
12 "bigip_password":"admin"
13 },
14 "saveEnvVars":true,
15 "outputFile":"Wrapper_Demo_1-run.json",
16 "envOutputFile":"Wrapper_Demo_1-env.json",
17 "workflow": [
18 {
19 "name":"Authenticate to BIG-IP",
20 "options": {
21 "collection":".. /collections/BIG_IP/BIGIP_API_

→˓Authentication. postman_collection.json",
22 "folder":"1_Authenticate"
23 }
24 },
25 {
26 "name":"Get BIG-IP Software Version",
27 "skip":false,
28 "options": {
29 "collection":".. /collections/BIG_IP/BIGIP_

→˓Operational_Workflows. postman_collection.json",
30 "folder":"4A_Get_BIGIP_Version"
31 }
32 }
33]
34 }

3.2.4 Lab 2.4: Run a workflow with f5-newman-wrapper

In this lab we will use the f5-super-netops-container to run the workflow we reviewed in the previous lab.
The advantage of using the f5-super-netops Container is that all the tools, collections and frameworks are
pre-installed and ready to use.

Task 1 - Run a f5-newman-wrapper Workflow

1. Return to, or open an SSH session as described in the previous lab

2. Run cd f5-postman-workflows/local

3. Run cp ../workflows/Wrapper_Demo_1.json .

4. Edit the Wrapper_Demo_1.json file with vim and enter the 10.1.1.4 for the value of the
bigip_mgmt variable

"globalVars": {
"bigip_mgmt": "10.1.1.4",
"bigip_username":"admin",

135

"bigip_password":"admin"
},

5. Run f5-newman-wrapper Wrapper_Demo_1.json

6. Examine the output to see how the workflow was executed. Notice that the same tests that we saw
when using Postman are present during this run.

Example output:

[snops@f5-super-netops] [~/f5-postman-workflows/local] $ f5-newman-wrapper
→˓Wrapper_Demo_1.json
[Wrapper_Demo_1-2017-03-30-04-08-12] starting run
[Wrapper_Demo_1-2017-03-30-04-08-12] [runCollection][Authenticate to BIG-IP]
→˓running...
newman

BIGIP_API_Authentication

? 1_Authenticate
? Authenticate and Obtain Token
POST https://10.1.1.4/mgmt/shared/authn/login [200 OK, 1.41KB, 108ms]
X [POST Response Code]=200
X [Populate Variable] bigip_token=WYKIVPHCNASNVEC55ZDVNH5OO2

? Verify Authentication Works
GET https://10.1.1.4/mgmt/shared/authz/tokens/WYKIVPHCNASNVEC55ZDVNH5OO2 [200

→˓OK, 1.23KB, 8ms]
X [GET Response Code]=200
X [Current Value] token=WYKIVPHCNASNVEC55ZDVNH5OO2
X [Check Value] token == WYKIVPHCNASNVEC55ZDVNH5OO2

? Set Authentication Token Timeout
PATCH https://10.1.1.4/mgmt/shared/authz/tokens/WYKIVPHCNASNVEC55ZDVNH5OO2 [200

→˓OK, 1.23KB, 14ms]
X [PATCH Response Code]=200
X [Current Value] timeout=1200
X [Check Value] timeout == 1200

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 3 | 0 |
?-----------------?-------?-------?
| test-scripts | 3 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 1 | 0 |
?-----------------?-------?-------?
| assertions | 8 | 0 |
?-----------------?-------?-------?
| total run duration: 297ms |
?-------------------------------?
| total data received: 1.71KB (approx) |
?-------------------------------?
| average response time: 43ms |
?-------------------------------?
[Wrapper_Demo_1-2017-03-30-04-08-12] [runCollection][Get BIG-IP Software Version]
→˓running...

136

newman

BIGIP_Operational_Workflows

? 4A_Get_BIGIP_Version
? Get Software Version
GET https://10.1.1.4/mgmt/tm/sys/software/volume [200 OK, 1.32KB, 16ms]
X [GET Response Code]=200
X [Populate Variable] bigip_version=12.1.1
X [Populate Variable] bigip_build=1.0.196

[Wrapper_Demo_1-2017-03-30-04-08-12] run completed

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 1 | 0 |
?-----------------?-------?-------?
| test-scripts | 1 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 0 | 0 |
?-----------------?-------?-------?
| assertions | 3 | 0 |
?-----------------?-------?-------?
| total run duration: 58ms |
?-------------------------------?
| total data received: 611B (approx) |
?-------------------------------?
| average response time: 16ms |
?-------------------------------?

7. Examine the environment variables that were saved at the end of the run by executing cat
Wrapper_Demo_1-env.json

Example output:

1 {
2 "id": "c0550892-36d4-4412-bf35-a1d9aa8d2efe",
3 "values": [
4 {
5 "type": "any",
6 "value": "10.1.1.4",
7 "key": "bigip_mgmt"
8 },
9 {

10 "type": "any",
11 "value": "admin",
12 "key": "bigip_username"
13 },
14 {
15 "type": "any",
16 "value": "admin",
17 "key": "bigip_password"
18 },
19 {
20 "type": "any",
21 "value": "WYKIVPHCNASNVEC55ZDVNH5OO2",

137

22 "key": "bigip_token"
23 },
24 {
25 "type": "any",
26 "value": "1200",
27 "key": "bigip_token_timeout"
28 },
29 {
30 "type": "any",
31 "value": "12.1.1",
32 "key": "bigip_version"
33 },
34 {
35 "type": "any",
36 "value": "1.0.196",
37 "key": "bigip_build"
38 }
39]
40 }

Notice that the bigip_version and bigip_build variables were saved, similar to how this was shown
in the Postman GUI Environment Variables. This file is JSON formatted and can easily be used directly by
other tools to drive further automation.

3.2.5 Lab 2.5: Building Complex Workflows

In the previous lab we reviewed and ran a very simple workflow. To support more complex use cases
f5-newman-wrapper includes features to help build more complex workflows.

These features allow users to:

• Create infinitely nested items

• Rename/remap variables name pre and post run of an item

• Load variables from a saved environment file

• Define variables in the global (workflow) or local (item) scope

To explore all the available options currently implemented please refer to https://raw.githubusercontent.com/
0xHiteshPatel/f5-postman-workflows/master/framework/f5-newman-wrapper/workflow-schema.json

Task 1 - Explore Nested Workflows & Variable Remapping

By using the ‘children’ array within an item in a workflow you can create nested items. In this task, we will
create a more advanced version of the workflow we used in the previous lab. This workflow will perform
authentication to two BIG-IP devices and then retrieve the software version running on each.

We will implement a workflow that is best depicted by the following branch diagram:

Start
|
|- Authenticate
| |- Authenticate to BIG-IP A
| |- Authenticate to BIG-IP B
|
|- Get BIGIP Version

138

https://raw.githubusercontent.com/0xHiteshPatel/f5-postman-workflows/master/framework/f5-newman-wrapper/workflow-schema.json
https://raw.githubusercontent.com/0xHiteshPatel/f5-postman-workflows/master/framework/f5-newman-wrapper/workflow-schema.json

| |- Get BIGIP Version on BIG-IP A
| |- Get BIGIP Version on BIG-IP B
|

Stop

To implement this workflow we need to consider how Input Variables are passed to each item in the work-
flow. Previously, we saw that the following variables are required to the the 1_Authenticate folder in the
BIGIP_API_Authentication collection:

• bigip_mgmt

• bigip_username

• bigip_password

The issue we encounter when building this workflow is that we, at a minimum, have different values for
bigip_mgmt because we are trying to communicate with two BIG-IP devices. To address this issue, we
could define our input variables as follows:

• bigip_a_mgmt = 10.1.1.4

• bigip_b_mgmt = 10.1.1.5

• bigip_username = admin

• bigip_password = admin

This solves the problem of providing both BIG-IP management addresses, however, it introduces an-
other issue. The 1_Authenticate folder requires that the management IP address be passed in the
bigip_mgmt input variable. To solve this issue, we will use variable name remapping to remap a globalVar
to a different name before the 1_Authenticate folder is run for each BIG-IP device. To illustrate this, we
will add more information to our diagram:

Start
|
|- Define globalVars
| |- bigip_a_mgmt = 10.1.1.4
| |- bigip_b_mgmt = 10.1.1.5
| |- bigip_username = admin
| |- bigip_password = admin
|
|- Authenticate
| |- Authenticate to BIG-IP A
| | | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
| |
| |- Authenticate to BIG-IP B
| | | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
|
|- Get BIGIP Version
| |- Get BIGIP Version on BIG-IP A
| |- Get BIGIP Version on BIG-IP B
|

Stop

We’ve now addressed our issues regarding defining and passing the BIG-IP management address, but
have to consider one last problem. The output variable of the 1_Authenticate folder is bigip_token.
By default f5-newman-wrapper will store all output variables from one folder and automatically pass them to
the next item. In this case, an issue occurs because the Authenticate to BIG-IP B item will overwrite

139

the bigip_token variable that was outputted by the Authenticate to BIG-IP A item. To resolve this
issue, we can remap variables AFTER or post-run of an item. We can modify our diagram to handle this
issue like this:

Start
|
|- Define globalVars
| |- bigip_a_mgmt = 10.1.1.4
| |- bigip_b_mgmt = 10.1.1.5
| |- bigip_username = admin
| |- bigip_password = admin
|
|- Authenticate
| |- Authenticate to BIG-IP A
| | | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
| | | Post-run: Remap bigip_token -> bigip_a_token
| |
| |- Authenticate to BIG-IP B
| | | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
| | | Post-run: Remap bigip_token -> bigip_b_token
|
|- Get BIGIP Version
| |- Get BIGIP Version on BIG-IP A
| |- Get BIGIP Version on BIG-IP B
|

Stop

The last step is to perform some additional pre-run remapping to pass the correct token to the
4A_Get_BIGIP_Version folder to get our BIG-IP software version. Additionally, we will perform some
post-run remaps so we can save the output variables for each device:

Start
|
|- Define globalVars
| |- bigip_a_mgmt = 10.1.1.4
| |- bigip_b_mgmt = 10.1.1.5
| |- bigip_username = admin
| |- bigip_password = admin
|
|- Authenticate
| |- Authenticate to BIG-IP A
| | | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
| | | Post-run: Remap bigip_token -> bigip_a_token
| |
| |- Authenticate to BIG-IP B
| | | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
| | | Post-run: Remap bigip_token -> bigip_b_token
|
|- Get BIGIP Version
| |- Get BIGIP Version on BIG-IP A
| | | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | | Pre-run: Remap bigip_a_token -> bigip_token
| | | Run: 4A_Get_BIGIP_Version folder
| | | Post-run: Remap bigip_version -> bigip_a_version

140

| | | Post-run: Remap bigip_build -> bigip_a_build
| |
| |- Get BIGIP Version on BIG-IP B
| | | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt
| | Pre-run: Remap bigip_b_token -> bigip_token
| | Run: 4A_Get_BIGIP_Version folder
| | Post-run: Remap bigip_version -> bigip_b_version
| | Post-run: Remap bigip_build -> bigip_b_build
|
|- Save globarVars to file
|

Stop

Note: Collections and folders that are designed to act on multiple devices are designed to automatically
use the bigip_a_... and bigip_b_... syntax to avoid having to remap variables. In this case the
BIGIP_Operational_Workflows collection is designed to perform actions on one device at a time, thus
the need for remapping of the bigip_token input variables.

Note: Another option that is available to solve this issue is to define all variables in the local scope for each
item. This method is not preferred because it decreases portability and increases complexity in definition of
input variables.

Task 2 - Build Complex Workflow JSON

Define Global Settings & Variables:

1 {
2 "name":"Wrapper_Demo_2",
3 "description":"Execute a chained workflow that authenticates to two BIG-IPs and

→˓retrieves their software version",
4 "globalEnvVars":"../framework/f5-postman-workflows.postman_globals.json",
5 "globalOptions": {
6 "insecure":true,
7 "reporters":["cli"]
8 },
9 "globalVars": {

10 "bigip_a_mgmt": "10.1.1.4",
11 "bigip_b_mgmt": "10.1.1.5",
12 "bigip_username":"admin",
13 "bigip_password":"admin"
14 },
15 "saveEnvVars":true,
16 "outputFile":"Wrapper_Demo_2-run.json",
17 "envOutputFile":"Wrapper_Demo_2-env.json"
18 }

Define Authentication Items

141

Note: As shown below, we can use the skip: true attribute to signal f5-newman-wrapper to not run
that particular item. The items children will still be processed. The skip attribute can be used to create
a container for similar requests.

1 {
2 "workflow": [
3 {
4 "name":"Authenticate to BIG-IPs",
5 "skip":true,
6 "children": [
7 {
8 "name":"Authenticate to BIG-IP A",
9 "options": {

10 "collection":"../collections/BIG_IP/BIGIP_API_Authentication.postman_
→˓collection.json",

11 "remapPreRun": {
12 "bigip_a_mgmt": "bigip_mgmt"
13 },
14 "folder":"1_Authenticate",
15 "remapPostRun": {
16 "bigip_token": "bigip_a_token"
17 }
18 }
19 },
20 {
21 "name":"Authenticate to BIG-IP B",
22 "options": {
23 "collection":"../collections/BIG_IP/BIGIP_API_Authentication.postman_

→˓collection.json",
24 "remapPreRun": {
25 "bigip_b_mgmt": "bigip_mgmt"
26 },
27 "folder":"1_Authenticate",
28 "remapPostRun": {
29 "bigip_token": "bigip_b_token"
30 }
31 }
32 }
33]
34 }
35]
36 }

The JSON above implements the following part of our branch diagram:

|- Authenticate
|- Authenticate to BIG-IP A
| | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | Run: 1_Authenticate folder
| | Post-run: Remap bigip_token -> bigip_a_token
|
|- Run: Authenticate to BIG-IP B
| | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt
| | Run: 1_Authenticate folder
| | Post-run: Remap bigip_token -> bigip_b_token

142

Specifically, note the use of the skip attribute on line 5 to create a container to group the items together.

Define Get Software Version Items

1 {
2 "workflow": [
3 {
4 "name":"Get BIG-IP Software Versions",
5 "skip":true,
6 "children": [
7 {
8 "name":"Get BIG-IP A Software Version",
9 "options": {

10 "collection":"../collections/BIG_IP/BIGIP_Operational_Workflows.postman_
→˓collection.json",

11 "remapPreRun": {
12 "bigip_a_mgmt": "bigip_mgmt",
13 "bigip_a_token": "bigip_token"
14 },
15 "folder":"4A_Get_BIGIP_Version",
16 "remapPostRun": {
17 "bigip_version": "bigip_a_version",
18 "bigip_build": "bigip_a_build"
19 }
20 }
21 },
22 {
23 "name":"Get BIG-IP B Software Version",
24 "options": {
25 "collection":"../collections/BIG_IP/BIGIP_Operational_Workflows.postman_

→˓collection.json",
26 "remapPreRun": {
27 "bigip_b_mgmt": "bigip_mgmt",
28 "bigip_b_token": "bigip_token"
29 },
30 "folder":"4A_Get_BIGIP_Version",
31 "remapPostRun": {
32 "bigip_version": "bigip_b_version",
33 "bigip_build": "bigip_b_build"
34 }
35 }
36 }
37]
38 }
39]
40 }

The JSON above implements the following part of our branch diagram:

|- Get BIGIP Version
|- Get BIGIP Version on BIG-IP A
| | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | Pre-run: Remap bigip_a_token -> bigip_token
| | Run: 4A_Get_BIGIP_Version folder
| | Post-run: Remap bigip_version -> bigip_a_version
| | Post-run: Remap bigip_build -> bigip_a_build
|

143

|- Get BIGIP Version on BIG-IP B
| | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt

| Pre-run: Remap bigip_b_token -> bigip_token
| Run: 4A_Get_BIGIP_Version folder
| Post-run: Remap bigip_version -> bigip_b_version
| Post-run: Remap bigip_build -> bigip_b_build

Final Workflow JSON

1 {
2 "name":"Wrapper_Demo_2",
3 "description":"Execute a chained workflow that authenticates to two BIG-IPs and

→˓retrieves their software version",
4 "globalEnvVars":"../framework/f5-postman-workflows.postman_globals.json",
5 "globalOptions": {
6 "insecure":true,
7 "reporters":["cli"]
8 },
9 "globalVars": {

10 "bigip_a_mgmt": "",
11 "bigip_b_mgmt": "",
12 "bigip_username":"admin",
13 "bigip_password":"admin"
14 },
15 "saveEnvVars":true,
16 "outputFile":"Wrapper_Demo_2-run.json",
17 "envOutputFile":"Wrapper_Demo_2-env.json",
18 "workflow": [
19 {
20 "name":"Authenticate to BIG-IPs",
21 "skip":true,
22 "children": [
23 {
24 "name":"Authenticate to BIG-IP A",
25 "options": {
26 "collection":"../collections/BIG_IP/BIGIP_API_Authentication.postman_

→˓collection.json",
27 "remapPreRun": {
28 "bigip_a_mgmt": "bigip_mgmt"
29 },
30 "folder":"1_Authenticate",
31 "remapPostRun": {
32 "bigip_token": "bigip_a_token"
33 }
34 }
35 },
36 {
37 "name":"Authenticate to BIG-IP B",
38 "options": {
39 "collection":"../collections/BIG_IP/BIGIP_API_Authentication.postman_

→˓collection.json",
40 "remapPreRun": {
41 "bigip_b_mgmt": "bigip_mgmt"
42 },
43 "folder":"1_Authenticate",
44 "remapPostRun": {

144

45 "bigip_token": "bigip_b_token"
46 }
47 }
48 }
49]
50 },
51 {
52 "name":"Get BIG-IP Software Versions",
53 "skip":true,
54 "children": [
55 {
56 "name":"Get BIG-IP A Software Version",
57 "options": {
58 "collection":"../collections/BIG_IP/BIGIP_Operational_Workflows.postman_

→˓collection.json",
59 "remapPreRun": {
60 "bigip_a_mgmt": "bigip_mgmt",
61 "bigip_a_token": "bigip_token"
62 },
63 "folder":"4A_Get_BIGIP_Version",
64 "remapPostRun": {
65 "bigip_version": "bigip_a_version",
66 "bigip_build": "bigip_a_build"
67 }
68 }
69 },
70 {
71 "name":"Get BIG-IP B Software Version",
72 "options": {
73 "collection":"../collections/BIG_IP/BIGIP_Operational_Workflows.postman_

→˓collection.json",
74 "remapPreRun": {
75 "bigip_b_mgmt": "bigip_mgmt",
76 "bigip_b_token": "bigip_token"
77 },
78 "folder":"4A_Get_BIGIP_Version",
79 "remapPostRun": {
80 "bigip_version": "bigip_b_version",
81 "bigip_build": "bigip_b_build"
82 }
83 }
84 }
85]
86 }
87]
88 }

Task 3 - Run the Workflow

1. Open an SSH session as described in the previous lab

2. Run cd f5-postman-workflows/local

3. Run cp ../workflows/Wrapper_Demo_2.json .

4. Edit the Wrapper_Demo_2.json file and enter you BIG-IP management addresses

145

1 {
2 "globalVars": {
3 "bigip_a_mgmt": "10.1.1.4",
4 "bigip_b_mgmt": "10.1.1.5",
5 "bigip_username":"admin",
6 "bigip_password":"admin"
7 }
8 }

5. Run f5-newman-wrapper Wrapper_Demo_2.json

6. Examine the output to see how the workflow was executed.

Example output:

[snops@f5-super-netops] [~/f5-postman-workflows/local] $ f5-newman-wrapper
→˓Wrapper_Demo_2.json
[Wrapper_Demo_2-2017-03-30-19-22-52] starting run
[Wrapper_Demo_2-2017-03-30-19-22-52] [runCollection][Authenticate to BIG-IP A]
→˓running...
newman

BIGIP_API_Authentication

? 1_Authenticate
? Authenticate and Obtain Token
POST https://10.1.1.4/mgmt/shared/authn/login [200 OK, 1.41KB, 570ms]
X [POST Response Code]=200
X [Populate Variable] bigip_token=UE7W5CXWM5SJ6SZEV5A7KTAI5Q

? Verify Authentication Works
GET https://10.1.1.4/mgmt/shared/authz/tokens/UE7W5CXWM5SJ6SZEV5A7KTAI5Q [200

→˓OK, 1.23KB, 9ms]
X [GET Response Code]=200
X [Current Value] token=UE7W5CXWM5SJ6SZEV5A7KTAI5Q
X [Check Value] token == UE7W5CXWM5SJ6SZEV5A7KTAI5Q

? Set Authentication Token Timeout
PATCH https://10.1.1.4/mgmt/shared/authz/tokens/UE7W5CXWM5SJ6SZEV5A7KTAI5Q [200

→˓OK, 1.23KB, 13ms]
X [PATCH Response Code]=200
X [Current Value] timeout=1200
X [Check Value] timeout == 1200

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 3 | 0 |
?-----------------?-------?-------?
| test-scripts | 3 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 1 | 0 |
?-----------------?-------?-------?
| assertions | 8 | 0 |
?-----------------?-------?-------?
| total run duration: 740ms |
?-------------------------------?

146

| total data received: 1.71KB (approx) |
?-------------------------------?
| average response time: 197ms |
?-------------------------------?
[Wrapper_Demo_2-2017-03-30-19-22-52] [runCollection][Authenticate to BIG-IP B]
→˓running...
newman

BIGIP_API_Authentication

? 1_Authenticate
? Authenticate and Obtain Token
POST https://10.1.1.5/mgmt/shared/authn/login [200 OK, 1.41KB, 350ms]
X [POST Response Code]=200
X [Populate Variable] bigip_token=ONQXOQPNCVOHZELKIFSPHETL3I

? Verify Authentication Works
GET https://10.1.1.5/mgmt/shared/authz/tokens/ONQXOQPNCVOHZELKIFSPHETL3I [200

→˓OK, 1.23KB, 9ms]
X [GET Response Code]=200
X [Current Value] token=ONQXOQPNCVOHZELKIFSPHETL3I
X [Check Value] token == ONQXOQPNCVOHZELKIFSPHETL3I

? Set Authentication Token Timeout
PATCH https://10.1.1.5/mgmt/shared/authz/tokens/ONQXOQPNCVOHZELKIFSPHETL3I [200

→˓OK, 1.23KB, 12ms]
X [PATCH Response Code]=200
X [Current Value] timeout=1200
X [Check Value] timeout == 1200

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 3 | 0 |
?-----------------?-------?-------?
| test-scripts | 3 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 1 | 0 |
?-----------------?-------?-------?
| assertions | 8 | 0 |
?-----------------?-------?-------?
| total run duration: 472ms |
?-------------------------------?
| total data received: 1.71KB (approx) |
?-------------------------------?
| average response time: 123ms |
?-------------------------------?
[Wrapper_Demo_2-2017-03-30-19-22-52] [runCollection][Get BIG-IP A Software
→˓Version] running...
newman

BIGIP_Operational_Workflows

? 4A_Get_BIGIP_Version
? Get Software Version
GET https://10.1.1.4/mgmt/tm/sys/software/volume [200 OK, 1.32KB, 207ms]

147

X [GET Response Code]=200
X [Populate Variable] bigip_version=12.1.1
X [Populate Variable] bigip_build=1.0.196

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 1 | 0 |
?-----------------?-------?-------?
| test-scripts | 1 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 0 | 0 |
?-----------------?-------?-------?
| assertions | 3 | 0 |
?-----------------?-------?-------?
| total run duration: 250ms |
?-------------------------------?
| total data received: 611B (approx) |
?-------------------------------?
| average response time: 207ms |
?-------------------------------?
[Wrapper_Demo_2-2017-03-30-19-22-52] [runCollection][Get BIG-IP B Software
→˓Version] running...
newman

BIGIP_Operational_Workflows

? 4A_Get_BIGIP_Version
? Get Software Version
GET https://10.1.1.5/mgmt/tm/sys/software/volume [200 OK, 1.32KB, 191ms]
X [GET Response Code]=200
X [Populate Variable] bigip_version=12.1.1
X [Populate Variable] bigip_build=1.0.196

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 1 | 0 |
?-----------------?-------?-------?
| test-scripts | 1 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 0 | 0 |
?-----------------?-------?-------?
| assertions | 3 | 0 |
?-----------------?-------?-------?
| total run duration: 230ms |
?-------------------------------?
| total data received: 611B (approx) |
?-------------------------------?
| average response time: 191ms |
?-------------------------------?
[Wrapper_Demo_2-2017-03-30-19-22-52] run completed in 3s, 316.921 ms

7. Examine the environment variables that were saved at the end of the run by executing cat

148

Wrapper_Demo_2-env.json. The resulting BIG-IP software versions are now present and have
been highlighted below.

Example output:

1 {
2 "id": "d459e491-4936-4be7-a910-567f711a636a",
3 "values": [
4 {
5 "type": "any",
6 "value": "10.1.1.4",
7 "key": "bigip_a_mgmt"
8 },
9 {

10 "type": "any",
11 "value": "10.1.1.5",
12 "key": "bigip_b_mgmt"
13 },
14 {
15 "type": "any",
16 "value": "10.1.1.5",
17 "key": "bigip_mgmt"
18 },
19 {
20 "type": "any",
21 "value": "admin",
22 "key": "bigip_username"
23 },
24 {
25 "type": "any",
26 "value": "admin",
27 "key": "bigip_password"
28 },
29 {
30 "type": "any",
31 "value": "UE7W5CXWM5SJ6SZEV5A7KTAI5Q",
32 "key": "bigip_a_token"
33 },
34 {
35 "type": "any",
36 "value": "ONQXOQPNCVOHZELKIFSPHETL3I",
37 "key": "bigip_b_token"
38 },
39 {
40 "type": "any",
41 "value": "ONQXOQPNCVOHZELKIFSPHETL3I",
42 "key": "bigip_token"
43 },
44 {
45 "type": "any",
46 "value": "12.1.1",
47 "key": "bigip_a_version"
48 },
49 {
50 "type": "any",
51 "value": "1.0.196",
52 "key": "bigip_a_build"
53 },
54 {

149

55 "type": "any",
56 "value": "1200",
57 "key": "bigip_token_timeout"
58 },
59 {
60 "type": "any",
61 "value": "12.1.1",
62 "key": "bigip_b_version"
63 },
64 {
65 "type": "any",
66 "value": "1.0.196",
67 "key": "bigip_b_build"
68 }
69]
70 }

3.3 Module 3: Stitching Workflows from Class 1 into new Orchestrat-
able Collections

In the previous module we saw the example of stitching together the Authentication Folder and some facts
gathering. We will now stitch together the Postman Collection from Class 1 and the Authentication Collection
from Module 2. Once we validate the new file we’ll use f5-newman-wrapper to execute.

In review, to assist users with automating the F5 BIG-IP platform we have developed a Collection of calls
that can be used with the Postman REST Client (http://getpostman.com). The purpose of the tools are:

• f5-postman-workflows

– Provide re-usable JavaScript functions that ease testing of API responses and populating envi-
ronment variables

– Implement a delay-based polling mechanism

• F5_Automation_Orchestration_Intro (Class 1)

– F5’s training collection for Onboarding BIG-IP

– F5’s training collection for Operating BIG-IP

Stitching together the collections and workflows allows Super-NetOps engineers the ability to start quickly
Orchestrating calls running Automation workflows. This also allows BIG-IP to be Orchestrated from upper
level orchestration toolkits.

Using this structure allows you to build your own solutions, to manage BIG-IP quickly as native REST calls
are used.

From the previous labs you should already have your Super-NetOps-Container running, if it’s not please
refer to Class 2 Module 2 on starting your service.

3.3.1 Lab 3.1 - Files used and locations

The f5-super-netops-container is a self contained toolkit, meaning everything we will be using is
already in the solution. It will also always be updated (CD), received either from restarting the container or
updating via git clones scripts.

150

http://getpostman.com

Note: If you are running in the provided training infrastructure, the f5-super-netops-container can
be accessed via Putty, all commands from this point will be run from within the container

Task 1 - Review the super-netops-container files and collections used

1. Return to or open a new session to the super-netops-container user credentials are snops and
default

2. During the installation of the super-netops-container there were several github repositories
cloned, all of which are mapped to the /home/snops/ directory.

Let’s make sure all repositories were mapped correctly.

Execute: cd /home/snops

The Collections we will be using are located here:

|- /f5-automation-labs
|- /postman_collections
| | f5-programmability-class-2.postman_collection.json

|- /f5-postman-workflows
|- /collections
| | /BIG_IP
| | BIGIP_Operational_Workflows.postman_collection.json

The f5-newman-wrapper configuration files are located here:

|- /f5-automation-labs
|- /jenkins
| | /f5-newman-build
| | f5-newman-build-1
| | f5-newman-build-2
| | f5-newman-build-5
| | /f5-newman-operation
| | f5-newman-build-3
| | f5-newman-build-4

3.3.2 Lab 3.2 - Execute f5-newman-wrapper for a Build Workflow

Your environment has already been seeded with 5 f5-newman-wrapper files, these files will execute
against the collections noted in the previous lab. This lab will cover the Build aspect, creating a Virtual
Server Framework containing all the pieces required for this demo service.

Note: This is a Postman Collection, and can also be imported into the Postman GUI client for viewing

For a visual reference of what f5-programmability-class-2.postman_collection.json looks like:

151

Note: You do not need to have all these operations individually broken out, it is shown this way to educate
that Workflows can be as small (update a pool member) or as large (deploy a whole service) as needed

Task 1 - Examine f5-newman-build-1

Note: The contents of this folder contain files for this lab and upcoming labs in this class

1. Return to or open a new session to the super-netops-container user credentials are snops and
default

152

2. Navigate to the location containing the f5-newman-wrapper files cd ~/f5-automation-labs/
jenkins/f5-newman-build

3. Let’s examine the contents of the first f5-newman-wrapper file cat f5-newman-build-1

1 {
2 "name":"f5-newman-build-1",
3 "description":"Execute a chained workflow that authenticates to a BIG-IP

→˓and builds configuration",
4 "globalEnvVars":"/home/snops/f5-postman-workflows/framework/f5-postman-

→˓workflows.postman_globals.json",
5 "globalOptions": {
6 "insecure":true,
7 "reporters":["cli"]
8 },
9 "globalVars": {

10 "bigip_mgmt": "10.1.1.4",
11 "bigip_username":"admin",
12 "bigip_password":"admin",
13 "bigip_partition":"Common",
14 "bigip_pool_name":"module_3_pool",
15 "bigip_pool_member":"75.67.228.133:80",
16 "bigip_object_state":"user-up",
17 "bigip_object_session":"user-enabled",
18 "bigip_vs_name":"module_3_vs",
19 "bigip_vs_destination":"10.1.20.129:80",
20 "bigip_node_name":"75.67.228.133",
21 "bigip_http_monitor":"module_3_http_monitor",
22 "bigip_http_profile":"module_3_http",
23 "bigip_tcp_profile":"module_3_tcp_clientside"
24 },
25 "workflow": [
26 {
27 "name":"Authenticate to BIG-IP",
28 "options": {
29 "collection":"/home/snops/f5-postman-workflows/

→˓collections/BIG_IP/BIGIP_API_Authentication.postman_collection.json",
30 "folder":"1_Authenticate"
31 }
32 }, (REMOVE THIS TEXT AND ADD YOUR CODE BELOW)
33

34 }
35]
36 }

#. The above f5-newman-wrapper file only has the Authenticate to BIG-IP Collection/Folder refer-
enced, we will need to add in another collection. You are going to add this code snippet after the last
},. This shows the method for chaining together multiple calls from multiple sources, shown in a previous
lab. For editing files VIM/VI is installed on the container, if you do not know how to use VIM/VI please let
the instructor know.

1 {
2 "name":"1 - Build a Basic LTM Config",
3 "skip":false,
4 "options": {
5 "collection":"/home/snops/f5-automation-labs/postman_

→˓collections/f5-programmability-class-2.postman_collection.json",
6 "folder":"1 - Build a Basic LTM Config"
7 }

153

1. Now that you have the full file you can see what it will look like with cat f5-newman-build-1. The
environment variables will float into both Collections, and the returned Global Variables will persist
during the whole run.

Example of a complete file:

1 {
2 "name":"f5-newman-build-1",
3 "description":"Execute a chained workflow that authenticates to a BIG-IP and

→˓builds configuration",
4 "globalEnvVars":"/home/snops/f5-postman-workflows/framework/f5-postman-

→˓workflows.postman_globals.json",
5 "globalOptions": {
6 "insecure":true,
7 "reporters":["cli"]
8 },
9 "globalVars": {

10 "bigip_mgmt": "10.1.1.4",
11 "bigip_username":"admin",
12 "bigip_password":"admin",
13 "bigip_partition":"Common",
14 "bigip_pool_name":"module_3_pool",
15 "bigip_pool_member":"75.67.228.133:80",
16 "bigip_object_state":"user-up",
17 "bigip_object_session":"user-enabled",
18 "bigip_vs_name":"module_3_vs",
19 "bigip_vs_destination":"10.1.20.129:80",
20 "bigip_node_name":"75.67.228.133",
21 "bigip_http_monitor":"module_3_http_monitor",
22 "bigip_http_profile":"module_3_http",
23 "bigip_tcp_profile":"module_3_tcp_clientside"
24 },
25 "workflow": [
26 {
27 "name":"Authenticate to BIG-IP",
28 "options": {
29 "collection":"/home/snops/f5-postman-workflows/

→˓collections/BIG_IP/BIGIP_API_Authentication.postman_collection.json",
30 "folder":"1_Authenticate"
31 }
32 },
33 {
34 "name":"1 - Build a Basic LTM Config",
35 "skip":false,
36 "options": {
37 "collection":"/home/snops/f5-automation-labs/postman_

→˓collections/f5-programmability-class-2.postman_collection.json",
38 "folder":"1 - Build a Basic LTM Config"
39 }
40 }
41]
42 }

Task 2 - Execute the first f5-newman-wrapper file

1. Login to your BIG-IP lab machine and verify you do not have any Virtual Servers or Pools

154

Note: If you are using the F5 lab systems there are already shortcuts in your Chrome browser
called BIG-IP A GUI, if you receive a certificate warning accept and add exception (the BIG-IP has
a self-signed cert which violates Chrome’s security). BIG-IP A Login credentials are admin\admin

2. f5-newman-build-1 now contains the needed calls to build the Framework of an Application Ser-
vice (Virtual Server, Pool and needed Profiles), it doesn’t however include any pool members.

Execute: f5-newman-wrapper f5-newman-build-1

Output should look like:

1 $ f5-newman-wrapper f5-newman-build-1
2 [f5-newman-build-1-2017-07-26-08-23-00] starting run
3 [f5-newman-build-1-2017-07-26-08-23-00] [runCollection][Authenticate to BIG-IP]

→˓running...
4 newman
5

6 BIGIP_API_Authentication
7

8 ? 1_Authenticate
9 ? Authenticate and Obtain Token

10 POST https://10.1.1.4/mgmt/shared/authn/login [200 OK, 1.41KB, 505ms]
11 X [POST Response Code]=200
12 X [Populate Variable] bigip_token=MB4YMPICV3XEZ3B47LJRQKGHTJ
13

14 ? Verify Authentication Works
15 GET https://10.1.1.4/mgmt/shared/authz/tokens/MB4YMPICV3XEZ3B47LJRQKGHTJ [200

→˓OK, 1.23KB, 17ms]
16 X [GET Response Code]=200
17 X [Current Value] token=MB4YMPICV3XEZ3B47LJRQKGHTJ
18 X [Check Value] token == MB4YMPICV3XEZ3B47LJRQKGHTJ
19

20 ? Set Authentication Token Timeout
21 PATCH https://10.1.1.4/mgmt/shared/authz/tokens/MB4YMPICV3XEZ3B47LJRQKGHTJ [

→˓200 OK, 1.23KB, 50ms]
22 X [PATCH Response Code]=200
23 X [Current Value] timeout=1200
24 X [Check Value] timeout == 1200
25

26 ?-----------------?-------?-------?
27 | | executed | failed |
28 ?-----------------?-------?-------?
29 | iterations | 1 | 0 |
30 ?-----------------?-------?-------?
31 | requests | 3 | 0 |
32 ?-----------------?-------?-------?
33 | test-scripts | 3 | 0 |
34 ?-----------------?-------?-------?
35 | prerequest-scripts | 1 | 0 |
36 ?-----------------?-------?-------?
37 | assertions | 8 | 0 |
38 ?-----------------?-------?-------?
39 | total run duration: 1197ms |
40 ?-------------------------------?
41 | total data received: 1.71KB (approx) |
42 ?-------------------------------?
43 | average response time: 190ms |

155

44 ?-------------------------------?
45 [f5-newman-build-1-2017-07-26-08-23-00] [runCollection][1 - Build a Basic LTM

→˓Config] running...
46 newman
47

48 f5-programmability-class-2
49

50 ? 1 - Build a Basic LTM Config
51 ? Step 1: Create a HTTP Monitor
52 POST https://10.1.1.4/mgmt/tm/ltm/monitor/http [200 OK, 1.32KB, 625ms]
53

54 ? Step 2: Create a Pool
55 POST https://10.1.1.4/mgmt/tm/ltm/pool [200 OK, 1.56KB, 157ms]
56

57 ? Step 3: Create a HTTP Profile
58 POST https://10.1.1.4/mgmt/tm/ltm/profile/http [200 OK, 1.96KB, 183ms]
59

60 ? Step 4: Create a TCP Profile
61 POST https://10.1.1.4/mgmt/tm/ltm/profile/tcp [200 OK, 2.68KB, 64ms]
62

63 ? Step 5: Create a Virtual Server
64 POST https://10.1.1.4/mgmt/tm/ltm/virtual [200 OK, 1.9KB, 230ms]
65

66 ?-----------------?-------?-------?
67 | | executed | failed |
68 ?-----------------?-------?-------?
69 | iterations | 1 | 0 |
70 ?-----------------?-------?-------?
71 | requests | 5 | 0 |
72 ?-----------------?-------?-------?
73 | test-scripts | 0 | 0 |
74 ?-----------------?-------?-------?
75 | prerequest-scripts | 0 | 0 |
76 ?-----------------?-------?-------?
77 | assertions | 0 | 0 |
78 ?-----------------?-------?-------?
79 | total run duration: 1406ms |
80 ?-------------------------------?
81 | total data received: 5.79KB (approx) |
82 ?-------------------------------?
83 | average response time: 251ms |
84 ?-------------------------------?
85 [f5-newman-build-1-2017-07-26-08-23-00] run completed in 6s, 90.207 ms

Note: Notice the 200 OK responses, the number of requests ect, we’re building in testing and logging,
look back at BIGIP-A for the newly created Application Service Framework

3. On BIG-IP A, examine Virtual Server module_3_vs:

4. On BIG-IP A, examine Pool module_3_pool:

156

Task 3 - Execute the second f5-newman-wrapper file

1. f5-newman-build-2 contains calls to add pool members to the Application Service Framework
created above; this is done independently of the build, to show Service staging as a possible use
case.

Execute: f5-newman-wrapper f5-newman-build-2

Output should look like:

1 $ f5-newman-wrapper f5-newman-build-2
2 [f5-newman-build-2-2017-07-26-08-40-52] starting run
3 [f5-newman-build-2-2017-07-26-08-40-52] [runCollection][Authenticate to BIG-IP]

→˓running...
4 newman
5

6 BIGIP_API_Authentication
7

8 ? 1_Authenticate
9 ? Authenticate and Obtain Token

10 POST https://10.1.1.4/mgmt/shared/authn/login [200 OK, 1.41KB, 272ms]
11 X [POST Response Code]=200
12 X [Populate Variable] bigip_token=WSNAXWTCWNZGJG7MDBVF6CRXTB
13

14 ? Verify Authentication Works
15 GET https://10.1.1.4/mgmt/shared/authz/tokens/WSNAXWTCWNZGJG7MDBVF6CRXTB [200 OK,

→˓ 1.23KB, 15ms]
16 X [GET Response Code]=200
17 X [Current Value] token=WSNAXWTCWNZGJG7MDBVF6CRXTB
18 X [Check Value] token == WSNAXWTCWNZGJG7MDBVF6CRXTB
19

20 ? Set Authentication Token Timeout
21 PATCH https://10.1.1.4/mgmt/shared/authz/tokens/WSNAXWTCWNZGJG7MDBVF6CRXTB [200

→˓OK, 1.23KB, 61ms]
22 X [PATCH Response Code]=200
23 X [Current Value] timeout=1200
24 X [Check Value] timeout == 1200
25

26 ?-----------------?-------?-------?
27 | | executed | failed |
28 ?-----------------?-------?-------?
29 | iterations | 1 | 0 |
30 ?-----------------?-------?-------?
31 | requests | 3 | 0 |
32 ?-----------------?-------?-------?
33 | test-scripts | 3 | 0 |
34 ?-----------------?-------?-------?
35 | prerequest-scripts | 1 | 0 |
36 ?-----------------?-------?-------?
37 | assertions | 8 | 0 |
38 ?-----------------?-------?-------?
39 | total run duration: 1034ms |
40 ?-------------------------------?
41 | total data received: 1.71KB (approx) |

157

42 ?-------------------------------?
43 | average response time: 116ms |
44 ?-------------------------------?
45 [f5-newman-build-2-2017-07-26-08-40-52] [runCollection][2 - Add Members to LTM

→˓Config] running...
46 newman
47

48 f5-programmability-class-2
49

50 ? 2 - Add Members to LTM Config
51 ? Step 1: Add Members to Pool
52 PATCH https://10.1.1.4/mgmt/tm/ltm/pool/module_3_pool [200 OK, 1.52KB, 143ms]
53

54 ?-----------------?-------?-------?
55 | | executed | failed |
56 ?-----------------?-------?-------?
57 | iterations | 1 | 0 |
58 ?-----------------?-------?-------?
59 | requests | 1 | 0 |
60 ?-----------------?-------?-------?
61 | test-scripts | 0 | 0 |
62 ?-----------------?-------?-------?
63 | prerequest-scripts | 0 | 0 |
64 ?-----------------?-------?-------?
65 | assertions | 0 | 0 |
66 ?-----------------?-------?-------?
67 | total run duration: 182ms |
68 ?-------------------------------?
69 | total data received: 818B (approx) |
70 ?-------------------------------?
71 | average response time: 143ms |
72 ?-------------------------------?
73 [f5-newman-build-2-2017-07-26-08-40-52] run completed in 4s, 328.497 ms

2. On BIG-IP A examine Virtual Server module_3_vs, the Virtual Server should be healthy and Green:

3. On BIG-IP A examine Pool module_3_pool:

3.3.3 Lab 3.3 - Execute f5-newman-wrapper for an Operations Workflow

In the last lab we walked through creating an Application Service Framework, and then updating the Service
Framework in a separate call. This lab has 2 f5-newman-files also, one used to user-down a pool member,
and another to user-up the same member. These could be used as individual calls from another toolkit
(which we’ll see later) or run independently as a single commands.

Task 1 - Execute f5-newman-build-3

1. Return to or open a new session to the super-netops-container user credentials are snops and
default

158

2. Navigate to the location containing the f5-newman-wrapper files cd ~/f5-automation-labs/
jenkins/f5-newman-operation

3. On BIGIP-A, examine the pool module_3_pool, you should see 2 active (Green) pool members:

4. f5-newman-build-3 contains calls to change the node state to user-down for
"bigip_pool_member":"75.67.228.133:80", both of these are specified as variables in
the f5-newman-wrapper files.

Execute: f5-newman-wrapper f5-newman-build-3

Output should look like:

1 $ f5-newman-wrapper f5-newman-build-3
2 [f5-newman-build-3-2017-07-26-09-06-53] starting run
3 [f5-newman-build-3-2017-07-26-09-06-53] [runCollection][Authenticate to BIG-IP]

→˓running...
4 newman
5

6 BIGIP_API_Authentication
7

8 ? 1_Authenticate
9 ? Authenticate and Obtain Token

10 POST https://10.1.1.4/mgmt/shared/authn/login [200 OK, 1.41KB, 267ms]
11 X [POST Response Code]=200
12 X [Populate Variable] bigip_token=JFN6TNIRAWEKNR5QPM26VT4QFE
13

14 ? Verify Authentication Works
15 GET https://10.1.1.4/mgmt/shared/authz/tokens/JFN6TNIRAWEKNR5QPM26VT4QFE [200

→˓OK, 1.23KB, 22ms]
16 X [GET Response Code]=200
17 X [Current Value] token=JFN6TNIRAWEKNR5QPM26VT4QFE
18 X [Check Value] token == JFN6TNIRAWEKNR5QPM26VT4QFE
19

20 ? Set Authentication Token Timeout
21 PATCH https://10.1.1.4/mgmt/shared/authz/tokens/JFN6TNIRAWEKNR5QPM26VT4QFE [200

→˓OK, 1.23KB, 26ms]

159

22 X [PATCH Response Code]=200
23 X [Current Value] timeout=1200
24 X [Check Value] timeout == 1200
25

26 ?-----------------?-------?-------?
27 | | executed | failed |
28 ?-----------------?-------?-------?
29 | iterations | 1 | 0 |
30 ?-----------------?-------?-------?
31 | requests | 3 | 0 |
32 ?-----------------?-------?-------?
33 | test-scripts | 3 | 0 |
34 ?-----------------?-------?-------?
35 | prerequest-scripts | 1 | 0 |
36 ?-----------------?-------?-------?
37 | assertions | 8 | 0 |
38 ?-----------------?-------?-------?
39 | total run duration: 1243ms |
40 ?-------------------------------?
41 | total data received: 1.71KB (approx) |
42 ?-------------------------------?
43 | average response time: 105ms |
44 ?-------------------------------?
45 [f5-newman-build-3-2017-07-26-09-06-53] [runCollection][3 - Disable Node] running.

→˓..
46 newman
47

48 f5-programmability-class-2
49

50 ? 3 - Disable Node
51 ? Step 1: Check Pool Exists
52 GET https://10.1.1.4/mgmt/tm/ltm/pool/~Common~module_3_pool [200 OK, 1.56KB,

→˓39ms]
53 X [GET Response Code]=200
54

55 ? Step 2: Check Pool Member Exists
56 GET https://10.1.1.4/mgmt/tm/ltm/pool/~Common~module_3_pool/members/~Common~75.

→˓67.228.133:80 [200 OK, 1.25KB, 33ms]
57 X [GET Response Code]=200
58

59 ? Step 3: Change Pool Member State
60 PUT https://10.1.1.4/mgmt/tm/ltm/pool/~Common~module_3_pool/members/~Common~75.

→˓67.228.133:80 [200 OK, 1.25KB, 298ms]
61 X [PUT Response Code]=200
62

63 ?-----------------?-------?-------?
64 | | executed | failed |
65 ?-----------------?-------?-------?
66 | iterations | 1 | 0 |
67 ?-----------------?-------?-------?
68 | requests | 3 | 0 |
69 ?-----------------?-------?-------?
70 | test-scripts | 3 | 0 |
71 ?-----------------?-------?-------?
72 | prerequest-scripts | 1 | 0 |
73 ?-----------------?-------?-------?
74 | assertions | 3 | 0 |
75 ?-----------------?-------?-------?

160

76 | total run duration: 1092ms |
77 ?-------------------------------?
78 | total data received: 1.89KB (approx) |
79 ?-------------------------------?
80 | average response time: 123ms |
81 ?-------------------------------?
82 [f5-newman-build-3-2017-07-26-09-06-53] run completed in 6s, 564.868 ms

Note: Notice the 200 OK responses, as it completed successfully

5. Log back into BIG-IP A examine the pool module_3_pool status page:

Task 2 - Execute f5-newman-build-4

1. Return to or open a new session to the super-netops-container user credentials are snops and
default

2. Navigate to the location containing the f5-newman-wrapper files cd ~/f5-automation-labs/
jenkins/f5-newman-operation

3. On BIG-IP A examine the pool module_3_pool, you should show only 1 Active and Green:

161

4. f5-newman-build-3 contains calls to user-up variable node "bigip_pool_member":"75.67.
228.133:80"

Execute: f5-newman-wrapper f5-newman-build-4

Output should look like:

1 $ f5-newman-wrapper f5-newman-build-4
2 [f5-newman-build-4-2017-07-26-09-12-47] starting run
3 [f5-newman-build-4-2017-07-26-09-12-47] [runCollection][Authenticate to BIG-IP]

→˓running...
4 newman
5

6 BIGIP_API_Authentication
7

8 ? 1_Authenticate
9 ? Authenticate and Obtain Token

10 POST https://10.1.1.4/mgmt/shared/authn/login [200 OK, 1.41KB, 240ms]
11 X [POST Response Code]=200
12 X [Populate Variable] bigip_token=LN5IEBCKW5TTNXZLX5VYRUTOW5
13

14 ? Verify Authentication Works
15 GET https://10.1.1.4/mgmt/shared/authz/tokens/LN5IEBCKW5TTNXZLX5VYRUTOW5 [200

→˓OK, 1.23KB, 15ms]
16 X [GET Response Code]=200
17 X [Current Value] token=LN5IEBCKW5TTNXZLX5VYRUTOW5
18 X [Check Value] token == LN5IEBCKW5TTNXZLX5VYRUTOW5
19

20 ? Set Authentication Token Timeout
21 PATCH https://10.1.1.4/mgmt/shared/authz/tokens/LN5IEBCKW5TTNXZLX5VYRUTOW5 [200

→˓OK, 1.23KB, 27ms]
22 X [PATCH Response Code]=200
23 X [Current Value] timeout=1200
24 X [Check Value] timeout == 1200
25

26 ?-----------------?-------?-------?

162

27 | | executed | failed |
28 ?-----------------?-------?-------?
29 | iterations | 1 | 0 |
30 ?-----------------?-------?-------?
31 | requests | 3 | 0 |
32 ?-----------------?-------?-------?
33 | test-scripts | 3 | 0 |
34 ?-----------------?-------?-------?
35 | prerequest-scripts | 1 | 0 |
36 ?-----------------?-------?-------?
37 | assertions | 8 | 0 |
38 ?-----------------?-------?-------?
39 | total run duration: 922ms |
40 ?-------------------------------?
41 | total data received: 1.71KB (approx) |
42 ?-------------------------------?
43 | average response time: 94ms |
44 ?-------------------------------?
45 [f5-newman-build-4-2017-07-26-09-12-47] [runCollection][4 - Enable Node] running..

→˓.
46 newman
47

48 f5-programmability-class-2
49

50 ? 4 - Enable Node
51 ? Step 1: Check Pool Exists
52 GET https://10.1.1.4/mgmt/tm/ltm/pool/~Common~module_3_pool [200 OK, 1.56KB,

→˓31ms]
53 X [GET Response Code]=200
54

55 ? Step 2: Check Pool Member Exists
56 GET https://10.1.1.4/mgmt/tm/ltm/pool/~Common~module_3_pool/members/~Common~75.

→˓67.228.133:80 [200 OK, 1.25KB, 28ms]
57 X [GET Response Code]=200
58

59 ? Step 3: Change Pool Member State
60 PUT https://10.1.1.4/mgmt/tm/ltm/pool/~Common~module_3_pool/members/~Common~75.

→˓67.228.133:80 [200 OK, 1.25KB, 62ms]
61 X [PUT Response Code]=200
62

63 ?-----------------?-------?-------?
64 | | executed | failed |
65 ?-----------------?-------?-------?
66 | iterations | 1 | 0 |
67 ?-----------------?-------?-------?
68 | requests | 3 | 0 |
69 ?-----------------?-------?-------?
70 | test-scripts | 3 | 0 |
71 ?-----------------?-------?-------?
72 | prerequest-scripts | 1 | 0 |
73 ?-----------------?-------?-------?
74 | assertions | 3 | 0 |
75 ?-----------------?-------?-------?
76 | total run duration: 519ms |
77 ?-------------------------------?
78 | total data received: 1.89KB (approx) |
79 ?-------------------------------?
80 | average response time: 40ms |

163

81 ?-------------------------------?
82 [f5-newman-build-4-2017-07-26-09-12-47] run completed in 4s, 510.429 ms

Note: Notice the 200 OK responses, as it completed successfully

5. On BIG-IP A examine Pool module_3_pool all Nodes should be back to the beginning state:

3.3.4 Lab 3.3 - Execute an f5-newman-wrapper for Teardown

To get ready for the next module, we’re going to execute one last f5-newman-wrapper directly. This file
is designed to delete the framework and service we created in the last few labs. We used 2 f5-newman-
wrapper files to create our service, but for the deletion we will only use 1.

Task 1 - Execute f5-newman-build-5

1. Return to or open a new session to the super-netops-container user credentials are snops and
default

2. Navigate to the location containing the f5-newman-wrapper files cd ~/f5-automation-labs/
jenkins/f5-newman-build

3. On BIG-IP A examine the virtual server module_3_vs, it should be active and Green:

4. On BIGIP-A examine the pool module_3_pool, you should show 2 active members Green:

164

5. f5-newman-build-5 contains calls to delete all items we’ve created in the last few modules

Execute: f5-newman-wrapper f5-newman-build-5

Output should look like:

1 $ f5-newman-wrapper f5-newman-build-5
2 [f5-newman-build-5-2017-07-26-09-28-13] starting run
3 [f5-newman-build-5-2017-07-26-09-28-13] [runCollection][Authenticate to BIG-IP]

→˓running...
4 newman
5

6 BIGIP_API_Authentication
7

8 ? 1_Authenticate
9 ? Authenticate and Obtain Token

10 POST https://10.1.1.4/mgmt/shared/authn/login [200 OK, 1.41KB, 194ms]
11 X [POST Response Code]=200
12 X [Populate Variable] bigip_token=NGEHHD6ZDJFD2MNF2UL3UXTGVH
13

14 ? Verify Authentication Works
15 GET https://10.1.1.4/mgmt/shared/authz/tokens/NGEHHD6ZDJFD2MNF2UL3UXTGVH [200

→˓OK, 1.23KB, 16ms]
16 X [GET Response Code]=200
17 X [Current Value] token=NGEHHD6ZDJFD2MNF2UL3UXTGVH
18 X [Check Value] token == NGEHHD6ZDJFD2MNF2UL3UXTGVH
19

20 ? Set Authentication Token Timeout
21 PATCH https://10.1.1.4/mgmt/shared/authz/tokens/NGEHHD6ZDJFD2MNF2UL3UXTGVH [200

→˓OK, 1.23KB, 17ms]
22 X [PATCH Response Code]=200
23 X [Current Value] timeout=1200
24 X [Check Value] timeout == 1200
25

26 ?-----------------?-------?-------?
27 | | executed | failed |
28 ?-----------------?-------?-------?
29 | iterations | 1 | 0 |
30 ?-----------------?-------?-------?
31 | requests | 3 | 0 |
32 ?-----------------?-------?-------?
33 | test-scripts | 3 | 0 |
34 ?-----------------?-------?-------?
35 | prerequest-scripts | 1 | 0 |
36 ?-----------------?-------?-------?
37 | assertions | 8 | 0 |
38 ?-----------------?-------?-------?
39 | total run duration: 835ms |
40 ?-------------------------------?
41 | total data received: 1.71KB (approx) |
42 ?-------------------------------?
43 | average response time: 75ms |
44 ?-------------------------------?
45 [f5-newman-build-5-2017-07-26-09-28-13] [runCollection][5 - Clean Up Service]

→˓running...
46 newman
47

48 f5-programmability-class-2
49

165

50 ? 5 - Clean Up Service
51 ? Step 1: Delete a Virtual Server
52 DELETE https://10.1.1.4/mgmt/tm/ltm/virtual/module_3_vs [200 OK, 740B, 57ms]
53

54 ? Step 2: Delete a TCP Profile
55 DELETE https://10.1.1.4/mgmt/tm/ltm/profile/tcp/module_3_tcp_clientside [200 OK,

→˓ 740B, 88ms]
56

57 ? Step 3: Delete a HTTP Profile
58 DELETE https://10.1.1.4/mgmt/tm/ltm/profile/http/module_3_http [200 OK, 740B,

→˓56ms]
59

60 ? Step 4: Delete a Pool
61 DELETE https://10.1.1.4/mgmt/tm/ltm/pool/module_3_pool [200 OK, 740B, 47ms]
62

63 ? Step 5: Delete a HTTP Monitor
64 DELETE https://10.1.1.4/mgmt/tm/ltm/monitor/http/module_3_http_monitor [200 OK,

→˓740B, 59ms]
65

66 ?-----------------?-------?-------?
67 | | executed | failed |
68 ?-----------------?-------?-------?
69 | iterations | 1 | 0 |
70 ?-----------------?-------?-------?
71 | requests | 5 | 0 |
72 ?-----------------?-------?-------?
73 | test-scripts | 0 | 0 |
74 ?-----------------?-------?-------?
75 | prerequest-scripts | 0 | 0 |
76 ?-----------------?-------?-------?
77 | assertions | 0 | 0 |
78 ?-----------------?-------?-------?
79 | total run duration: 445ms |
80 ?-------------------------------?
81 | total data received: 0B (approx) |
82 ?-------------------------------?
83 | average response time: 61ms |
84 ?-------------------------------?
85 [f5-newman-build-5-2017-07-26-09-28-13] run completed in 4s, 267.464 ms

Note: Notice the 200 OK responses, as it completed successfully

6. On BIG-IP A examine Virtual module_3_vs and Pool module_3_pool are deleted

3.4 Module 4: Continuous Integration / Continuous Delivery

This Module will continue to build up our Infrastructure to a Self-Service or CI/CD goal. We will be building
on the code that was utilized in the previous modules and labs, though now we’ll use Jenkins to provide a
CI/CD mechanism. This lab will also use Slack to notify users of changes going on in real time.

Tools we will be using:

• f5-newman-wrapper & previous workflows

– The previous 5 wrapper workflows files will be executed, but from a Jenkins Pipeline

166

• f5-super-netops-container

– Continuing delivery of F5 configuration from a self contained toolkit

– This version or variant of the container has Jenkins installed for you, this is depicted from tag
associated to the Docker Image f5devcentral/f5-super-netops-container:jenkins

• Slack

– There has been a Slack channel already setup on your behalf, which we will all be monitoring for
environment changes

– Any person with an @f5.com email address can join the Slack Channel. To join and view the
transactions use https://f5agilitydevops.slack.com/signup

• Jenkins

– Jenkins is installed on the f5-super-netops-container, accessed via http://10.1.1.8:10000
(Web) user credentials are admin/default

From the previous labs you should already have your Super-NetOps-Container already running, if it’s not
please refer to Class 2 Module 2 on starting the service.

3.4.1 Lab 4.1 - File Locations and Jenkins setup

We’ve been executing all our commands locally from Automated scripts; we are now going to take the
different toolkits and tie them together to form a Pipeline. Pipelines will vary in deployments and even
within solutions. Our lab will show you just one way one could be utilized.

Task 1 - Locating the Jenkins files and how they are setup

1. Return to or open a new session to the super-netops-container, user credentials are snops
and default

2. During the installation of the f5-super-netops-container there were several github repositories cloned,
all of which are mapped to the /home/snops/ directory. Lets make sure the Jekins files were mapped
correctly.

Execute: cd ~/f5-automation-labs/jenkins to access our folder containing the Jenkins
Pipeline Files

3. The Jenkins files are located alongside the f5-newman-wrapper files we’ve used in the previous labs,
setup this way was for ease of learning. You may place tools in different structures in your environment.

File Locations:

|- /f5-automation-labs
|- /jenkins
| | /f5-newman-build
| | Jenkinsfile1-2
| | Jenkinsfile5
| | /f5-newman-operation
| | Jenkinsfile3
| | Jenkinsfile4

4. Lets review the first Jenkins file, from the current folder structure execute cat Jenkinsfile1-2

File output:

167

https://f5agilitydevops.slack.com/signup

1 node {
2 stage('Testing') {
3 //Run the tests
4 //sh "python -m /home/snops/f5-automation-labs/jenkins/f5-newman-build/f5-

→˓newman-build-1"
5 //sh "python -m /home/snops/f5-automation-labs/jenkins/f5-newman-build/f5-

→˓newman-build-2"
6 }
7 stage('Frameword-Deployment') {
8 //Run SNOPS Container Newman Package Virtual and Pool
9 sh "f5-newman-wrapper /home/snops/f5-automation-labs/jenkins/f5-newman-

→˓build/f5-newman-build-1"
10 //chatops slack message that run has completed
11 slackSend(
12 channel: '#jenkins_builds',
13 color: 'good',
14 message: 'Super-NetOps Engineer is about to deploy an F5 Service

→˓Framework, Approval Needed!',
15 teamDomain: 'f5agilitydevops',
16 token: 'vLMQmBq2tiyiCcZoNlbmAi0Z'
17)
18 }
19 stage('Approval') {
20 //Gate the process and require approval
21 input 'Proceed?'
22 //chatops slack message that run has completed
23 slackSend(
24 channel: '#jenkins_builds',
25 color: 'good',
26 message: 'Super-NetOps Engineer just approved a new F5 Service

→˓Framework, thats some serious Continuous Delivery!',
27 teamDomain: 'f5agilitydevops',
28 token: 'vLMQmBq2tiyiCcZoNlbmAi0Z'
29)
30 }
31 stage('Add-Sevice-Node') {
32 //Run SNOPS Container Newman Package add Node to Pool
33 sh "f5-newman-wrapper /home/snops/f5-automation-labs/jenkins/f5-newman-

→˓build/f5-newman-build-2"
34 //chatops slack message that run has completed
35 slackSend(
36 channel: '#jenkins_builds',
37 color: 'good',
38 message: 'Super-NetOps Engineer just added a Node to a Service,

→˓Production is Online!',
39 teamDomain: 'f5agilitydevops',
40 token: 'vLMQmBq2tiyiCcZoNlbmAi0Z'
41)
42 }
43 }

• This is a Jenkins Pipeline file, which we will be inputing into a Pipeline deployment via our Jenkins
Toolkit.

• The file should be human readable even without Jenkins experience, a stage can be thought
of as a step in the Pipeline (or a work-center in manufacturing terms); right after the stage is its
name, followed by some commands. Since the super-netops-container is running this Jenkins
installation locally, we can use local mappings to file structure.

168

• In more common deployments the Jenkins file would be stored in a SCM (like Github) and called
during an Event (Build/Pull Request) or a Polling Timer, or even some other kind of scripting
launch.

• Testing in Pipeline before executing code with tools like linter or python scripts can make sure
formatting is valid, reducing errors from happening during builds.

Our installation also has some Slack calls. Which we will setup next.

Task 2 - Accessing Jenkins and Installing the Slack-Notifier Plug-in

Slack is a ChatOps toolkit, think of Skype, Teams, Messenger, or IIRC! Except Slack also has the ability
to take in bots. slackbots are used to interact with services, they might query for something when asked,
or give you information when they notice something. In our case our Jenkins Pipeline file will use Slack to
notify all of us when an action happens, collaborative teamwork.

Note: In the Jenkins Files, the message piece is sent to the Slack channel, if you would like to
modify your messages for our lab change the text!

1. Access Jenkins via Chrome, there is already a bookmark Jenkins created on your behalf , the user
credentials are admin\default.

169

2. Once you are logged into Jenkins it should look like below

3. Click on Manage Jenkins

170

4. On the Manage Jenkins tab Select Available then filter on slack, once the filter is complete choose
Slack Notification Plugin and execute Install without Restart

5. Once the Slack Notification Plugin has changed to Success, tick the radio button for Restart
Jenkins when installation is complete and no jobs are running

6. Slack can take a few minutes to install in the background (give it 30 seconds), once the Restarting
Jenkins globe is grey and the status is Running go back to Jenkins Home

171

7. Executing a restart of Jenkins will stop your session, you will need to log back into the system

172

3.4.2 Lab 4.2 - Executing Jenkins Jobs for Creation or Modify

Now that we have Jenkins running, and the dependent Slack Plugin installed we can utilize our Jenkins
Pipeline Scripts successfully.

Task 1 - Building the Application Service Framework via Jenkins

This step is executing the f5-newman-wrapper files. Instead of having to run the two different builds (Ap-
plication Service Framework and Pool member add) individually we’ll us a pause. Jenkins has a pause
functionality which pausing the deployment looking for an approval to continue. After the approving step,
the node to be added, still using 2 f5-newman-wrapper files but in conjunction with a single solution (Jenk-
ins). Jenkins will continue to update the class via Slack as people are progressing. Jenkins does also keep
a running console for logging, which we will also review.

1. From the Jenkins Dashboard click on create new jobs

173

2. We are going to create our first Pipeline Job. Name the item module_4_jenkinsfile1-2, choose
the Pipeline project style and select OK

174

3. We are going to be using the raw Jenkinsfile1-2 right in the Pipeline Script option at the end
of the config page. Scroll to the bottom of the page but please look at the other options which can
deploy a Pipeline. The different options in here are for an SCM (like GitHub), the Polling or Commit
methods enable Continuous Deployment, as Jenkins will deploy the change on an event basis. Tie
this with automatic testing to make sure you’re not breaking the build!

4. We need to enter the contents of the Jenkinsfile1-2 into the Script section under Pipeline. After
the contents are added click the Save Option.

1 node {
2 stage('Testing') {
3 //Run the tests
4 //sh "python -m /home/snops/f5-automation-labs/jenkins/f5-newman-build/f5-

→˓newman-build-1"
5 //sh "python -m /home/snops/f5-automation-labs/jenkins/f5-newman-build/f5-

→˓newman-build-2"
6 }
7 stage('Frameword-Deployment') {
8 //Run SNOPS Container Newman Package Virtual and Pool
9 sh "f5-newman-wrapper /home/snops/f5-automation-labs/jenkins/f5-newman-build/

→˓f5-newman-build-1"
10 //chatops slack message that run has completed
11 slackSend(
12 channel: '#jenkins_builds',

175

13 color: 'good',
14 message: 'Super-NetOps Engineer is about to deploy an F5 Service Framework,

→˓Approval Needed!',
15 teamDomain: 'f5agilitydevops',
16 token: 'vLMQmBq2tiyiCcZoNlbmAi0Z'
17)
18 }
19 stage('Approval') {
20 //Gate the process and require approval
21 input 'Proceed?'
22 //chatops slack message that run has completed
23 slackSend(
24 channel: '#jenkins_builds',
25 color: 'good',
26 message: 'Super-NetOps Engineer just approved a new F5 Service Framework,

→˓thats some serious Continuous Delivery!',
27 teamDomain: 'f5agilitydevops',
28 token: 'vLMQmBq2tiyiCcZoNlbmAi0Z'
29)
30 }
31 stage('Add-Sevice-Node') {
32 //Run SNOPS Container Newman Package add Node to Pool
33 sh "f5-newman-wrapper /home/snops/f5-automation-labs/jenkins/f5-newman-build/

→˓f5-newman-build-2"
34 //chatops slack message that run has completed
35 slackSend(
36 channel: '#jenkins_builds',
37 color: 'good',
38 message: 'Super-NetOps Engineer just added a Node to a Service, Production

→˓is Online!',
39 teamDomain: 'f5agilitydevops',
40 token: 'vLMQmBq2tiyiCcZoNlbmAi0Z'
41)
42 }
43 }

Contents in Pipeline:

176

1. Once the Job is saved, you will be taken to the stage view page, from here we are going to execute
our Pipeline build, choose the Build Now option.

177

2. The Build is now running, and the stages are being executed in order. However, on our third stage
we have a pause and an approval needed. Also at the same time Slack has began to notify us that a
new service is being deployed, and someone needs to approve it.

178

Highlight over the third Stage to prompt for the Approval

3. Approve the change in Jenkins to allow the build to finish. Once this is done, the approval and finished
Slack notification will be sent.

179

4. At the end of the Build event (success or failure) there is a console output from Jenkins. Select the
blue globe on the left to see the outputs

180

5. The Console Output file not only contains the Jenkins output from the Build, but also the f5-newman-
wrapper toolkit logs for easy troubleshooting

6. Check Slack for the completion of everything!

7. Verify on the BIG-IP that the pool module_3_vs has been created and the services are Green

181

Task 2 - Jenkinsfile3 and Jenkinsfile4

These two Jenkins files were completed to show the ability of creating smaller deployments. In our case
we will use the f5-newman-wrapper toolkit to again change the user selected state of a pool member. The
different Pipelines notifications also have different Slack Color depictions, helping to quickly identify issues
to team members.

1. Return to the Jenkins Dashboard and select New Item

2. Repeat steps 2 & 3 of the last module, creating 2 new Jenkins jobs, one for each desired node state.

3. Create and Execute module_4_jenkinsfile_3 for a down node

Pipeline Job Name: module_4_jenkinsfile_3

1 node {
2 stage('Testing') {
3 //Run the tests
4 //sh "python -m /home/snops/f5-automation-labs/jenkins/f5-newman-operation/

→˓f5-newman-build-3"
5 }
6 stage('Disable-Node') {
7 //Run SNOPS Container Newman Package Virtual and Pool
8 sh "f5-newman-wrapper /home/snops/f5-automation-labs/jenkins/f5-newman-

→˓operation/f5-newman-build-3"
9 //chatops slack message that run has completed

10 slackSend(
11 channel: '#jenkins_builds',
12 color: 'bad',
13 message: 'Super-NetOps Engineer just disabled a Service Node!',
14 teamDomain: 'f5agilitydevops',
15 token: 'vLMQmBq2tiyiCcZoNlbmAi0Z'
16)
17 }
18 }

182

4. Verify on the BIG-IP that the pool module_3_pool has a down node

5. Create and Execute module_4_jenkinsfile_4 for an up node

Pipeline Job Name: module_4_jenkinsfile_4

1 node {
2 stage('Testing') {
3 //Run the tests
4 //sh "python -m /home/snops/f5-automation-labs/jenkins/f5-newman-operation/

→˓f5-newman-build-4"
5 }
6 stage('Enable-Node') {
7 //Run SNOPS Container Newman Package Virtual and Pool
8 sh "f5-newman-wrapper /home/snops/f5-automation-labs/jenkins/f5-newman-

→˓operation/f5-newman-build-4"
9 //chatops slack message that run has completed

10 slackSend(
11 channel: '#jenkins_builds',
12 color: 'good',
13 message: 'Super-NetOps Engineer just enabled a Service Node!',
14 teamDomain: 'f5agilitydevops',
15 token: 'vLMQmBq2tiyiCcZoNlbmAi0Z'
16)
17 }
18 }

6. Verify on the BIG-IP that the pool module_3_pool has an up node

3.4.3 Lab 4.3 - Destroying a Service with Jenkins

For the last module we will teardown the Application Service we’ve been working with today. Destruction
of an Application Services is an easy step often overlooked because of the perceived complexity it takes
to reverse engineer a build. Utilizing Postman and the f5-newman-wrapper this is actually a very easy
step, and will be incredibly valuable to teams seeking to strive for better Application Lifecycle Management.
Because Postman and Newman operate in sequential order, simply reversing the order of creation will
result in the correct teardown order. Also, since we’re using the native F5 REST endpoints, all you need is
a Resource with a DELETE method.

Task 1 - Teardown the Application via Jenkins

1. Return to the Jenkins Dashboard and select New Item

183

2. Repeat steps 2 & 3 of the first module, creating the final Jenkins job

3. Create and Execute module_4_jenkinsfile_5 to destroy our Application Service

Pipeline Job Name: module_4_jenkinsfile_5

1 node {
2 stage('Testing') {
3 //Run the tests
4 //sh "python -m /home/snops/f5-automation-labs/jenkins/f5-newman-build/f5-

→˓newman-build-5"
5 }
6 stage('Removal-Notification') {
7 //Run SNOPS Container Newman Package Delete Service
8 //chatops slack message that run has completed
9 slackSend(

10 channel: '#jenkins_builds',
11 color: 'bad',
12 message: 'Super-NetOps Engineer is about to remove an F5 Service!',
13 teamDomain: 'f5agilitydevops',
14 token: 'vLMQmBq2tiyiCcZoNlbmAi0Z'
15)
16 }
17 stage('Approval') {
18 //Gate the process and require approval
19 input 'Delete?'
20 }
21 stage('Service-Delete') {
22 //Run SNOPS Container Newman Package add Node to Pool
23 sh "f5-newman-wrapper /home/snops/f5-automation-labs/jenkins/f5-newman-

→˓build/f5-newman-build-5"
24 //chatops slack message that run has completed
25 slackSend(
26 channel: '#jenkins_builds',
27 color: 'good',
28 message: 'Super-NetOps Engineer removed an F5 Service successfully!',
29 teamDomain: 'f5agilitydevops',
30 token: 'vLMQmBq2tiyiCcZoNlbmAi0Z'
31)
32 }
33 }

4. Verify the on the BIG-IP the service has been Deleted

5. Class 2 is Complete! if you have extra time, please give us feedback! https://www.surveymonkey.com/
r/W2SZDYK

184

https://www.surveymonkey.com/r/W2SZDYK
https://www.surveymonkey.com/r/W2SZDYK

4
Class 3: Introduction to SecDevOps

This hands-on lab will demonstrate how to secure applications programmatically using a BIG-IP’s iControl
based REST API.

Leveraging programmability to deploy security policies and/or adhere to best practices during an applica-
tion’s lifecycle reduces the operational (e.g. time and money) cost of a defense in depth strategy. Program-
matic workflows can be developed and deployed for specific security use cases, and integrated into the
SDLC process, allowing for the protection of an application to iterate in parallel with the development of the
application.

This course will feature the following topics.

• General interaction with tmm via BIG-IPs REST APIs

• Create, modify and assign an AFM policy

• Create, modify and assign an ASM policy

Lab Guide

This lab is divided into three modules. Each module of the lab, will require configuration of the BIG-IP, AFM,
or ASM using the iControl REST based API. It is recommended that each lab be executed in order.

To perform the steps required in the lab, Postman will be used from the Windows jump box.

Prior to beginning the exercises, it is recommended to review the Lab Topology .

1. Module 1: Configuring BIG-IP

2. Module 2: Configuring AFM (Advanced Firewall Module)

3. Module 3: Configuring ASM (Application Security Module)

Support

Bugs and enhancements can be made by opening an issue within the GitHub repository.

Getting Started

Please follow the instructions provided by the instructor to start your lab and access your jump host.

Note: All work for this lab will be performed exclusively from the Windows jumphost. No software installa-
tion or interaction with your local system is required.

Expected time to complete: 3 hours

185

https://www.getpostman.com/
https://github.com/f5devcentral/f5-automation-labs/issues
https://github.com/f5devcentral/f5-automation-labs

4.1 Lab Topology

The network topology implemented for this lab is very simple. Since the focus of the lab is Control Plane
programmability rather that Data Plane traffic flow we can keep the data plane fairly simple. The following
components have been included in your lab environment:

• 1 x F5 BIG-IP (v13.0)

• 1 x Linux webserver (Ubuntu 16.04)

• 1 x Windows 7 jump box

The following table lists VLANS, IP Addresses and Credentials for all components:

Component VLAN/IP Address(es) Credentials
Windows Jump
Box • Management: 10.1.1.250

• External: 10.1.10.250

external_user/available in instance de-
tails

BIG-IP
• Management: 10.1.1.5
• External: 10.1.10.5
• Internal: 10.1.20.5

admin/admin

Linux Server
• Management: 10.1.1.10
• Internal: 10.1.20.10

ubuntu/ubuntu

4.2 Module 1: iControl REST API Refresher

• Explore the iControl REST API on a BIG-IP

• Use Postman to interact with the iControl REST API

• Authenticate to the BIG-IP using a username/password and token

• Modify the authentication token timeout

• Build a basic LTM configuration

4.2.1 Lab 1.1: Exploring iControl

The iControl REST API available via TMOS can be directly accessed and endpoints explored.

1. Open Google Chrome and navigate to the following bookmarks: BIG-IP A GUI and BIG-IP API ToC.
Accept any SSL warnings/errors that appear and ensure that you can access both login prompts.

2. Click on the BIG-IP API ToC bookmark to access the API Table of Contents for BIG-IP A. The /mgmt/
toc path in the URL is available on all TMOS versions 11.6 or newer.

3. Authenticate using the default admin/admin credentials.

4. After successfully authenticating, you will be presented with a top-level list of REST resources avail-
able on the BIG-IP. At the top of the page is a search box that can be used to search for specific REST
resources.

186

4.2.2 Lab 1.2: API Authentication

This lab utilizes the Postman Chrome extension to facilitate the sending data to and receiving data from the
iControl REST API.

REST API Authentication

One of the many basic concepts related to interaction with REST API’s is how a particular consumer is au-
thenticated to the system. BIG-IP, BIG-IQ and iWorkflow support two types of authentication: HTTP BASIC
and Token based. It’s important to understand both of these authentication mechanisms, as consumers of
the API will often make use of both types depending on the use case. This lab will demonstrate how to
interact with both types of authentication.

Task 1 - Basic Authentication

Warning: Prior to performing any of the below steps, ensure that you can log into the BIG-IP with
Chrome after accepting the invalid certificate. Postman relies on the Chrome certificate store and if the
self-signed cert has not been accepted via Chrome, this extension will not work properly.

In this task we will use the Postman tool to send API requests using HTTP BASIC authentication. As its
name implies this method of authentication encodes the user credentials via the existing BASIC authentica-
tion method provided by the HTTP protocol. The mechanism this method uses is to insert an HTTP header
named ‘Authorization’ with a value that is built by Base 64 encoding the string “<username>:<password>”.
The resulting header takes this form:

Authorization: Basic YWRtaW46YWRtaW4=

It should be noted that cracking the method of authentication is TRIVIAL; as a result API calls should always
be performed using HTTPS (F5 default) rather than HTTP.

Perform the following steps to complete this task:

1. Open the Postman Client on your jumphost by clicking the icon.

2. To assist in multi-step procedures we make heavy use of the ‘Environments’ capability in Postman.
This capability allows us to set various global variables that are then substituted into a request before
it’s sent. When you open Postman please verify that your environment is set the F5 SecDevOps
environment:

187

3. Click the ‘Collections’ tab on the left side of the screen, expand the ‘F5 SecDevOps’ collection on the
left side of the screen, expand the Lab 1.2 - API Authentication folder:

(Ignore the # of requests on the screen below versus what you might see, the # of requests will grow and
change as this lab grows)

4. Click the 1. HTTP BASIC Authentication item. Click the ‘Authorization’ tab and select ‘Basic Auth’
as the Type. Fill in the username and password (admin/admin) and click the ‘Update Request’ button.
Notice that the number of Headers in the Headers tab changed from 1 to 2. This is because Postman
automatically created the HTTP header and updated your request to include it. Click the ‘Headers’
tab and examine the HTTP header:

188

5. Click the ‘Send’ button to send the request. If the request succeeds you should be presented with a
listing of the ‘/mgmt/tm/ltm’ Organizing Collection.

Tip: Pay attention to the Status response i.e. 200 OK

Task 2 - Token Based Authentication

One of the disadvantages of BASIC Authentication is that credentials are sent with each and every request.
This can result in a much greater attack surface being exposed unnecessarily. As a result Token Based
Authentication (TBA) is preferred in many cases. This method only sends the credentials once, on the
first request. The system then responds with a unique token for that session and the consumer then uses
that token for all subsequent requests. BIG-IP, BIG-IQ and iWorkflow support token-based authentication
that drops down to the underlying authentication subsystems available in TMOS. As a result the system
can be configured to support external authentication providers (RADIUS, TACACS, AD, etc) and those
authentication methods can flow through to the REST API. In this task we will demonstrate TBA using the
local authentication database, however, authentication to external providers is fully supported.

Tip: For more information about external authentication providers see the section titled “About external
authentication providers with iControl REST” in the iControl REST API User Guide available at https://
devcentral.f5.com

Perform the following steps to complete this task:

1. Click the 2: Get Authentication Token item in the Lab 1.2 - API Authentication Postman Collection

2. Notice that we send a POST request to the ‘/mgmt/shared/authn/login’ endpoint. Note that BASIC
authentication is NOT required for this step. The token is provided based on the credentials located
within the JSON payload.

3. Click the ‘Body’ tab and examine the JSON that we will send to BIG-IP to provide credentials and the
authentication provider:

4. Modify the JSON body and add the required credentials (admin/admin). Then click the ‘Send’ button.

5. Examine the response status code. If authentication succeeded and a token was generated, the
response will have a 200 OK status code. If the status code is 401 then check your credentials. View
the response body to see the token that was provided:

Successful:

189

https://devcentral.f5.com
https://devcentral.f5.com

Unsuccessful:

6. Once you receive a 200 OK status code examine the response body. The various attributes show the
parameters assigned to the particular token. Find the ‘token’ attribute and copy it into your clipboard
(Ctrl+c) for use in the next step:

7. Click the 3: Verify Authentication Works item in the Lab 1.2 - API Authentication Postman col-
lection. Click the ‘Headers’ tab and paste the token value copied above as the VALUE for the ‘X-
F5-Auth-Token’ header. This header is required to be sent on all requests when using token based
authentication.

190

8. Click the ‘Send’ button. If you’re request is successful you should see a ‘200 OK’ status and a listing
of the ‘ltm’ Organizing Collection.

9. We will now update your Postman environment to use this auth token for the remainder of the lab.
Click the Environment menu in the top right of the Postman window and click ‘Manage Environments’:

10. Click the F5 SecDevOps item:

11. Update the value for ‘big_ip_a_auth_token’ by Pasting (Ctrl-v) in your auth token:

12. Click the ‘Update’ button and then close the ‘Manage Environments’ window. You’re subsequent
requests will now automatically substitue the token’s value where the {{big_ip_a_auth_token}} envi-
ronmental variable is used.

191

13. Click the 4: Set Authentication Token Timeout item in the Lab 1.2 - API Authentication Postman
collection. This request will PATCH your token Resource (check the URI) and update the timeout
attribute so we can complete the lab easily. Examine the request type and JSON Body and then click
the ‘Send’ button. Verify that the timeout has been changed to ‘36000’ in the response:

192

4.2.3 Lab 1.3: Building a Basic LTM Config

Overview

In this lab, the iControl REST API will be used to build a basic monitor, node, pool, and virtual server
configuration on the BIG-IP.

Specific Instructions

Prior to performing the below steps, validate that the Hackazon web site is not accessible via the Windows
jump box by clicking on the Hackazon bookmark in the Chrome toolbar.

Follow the below steps in order found in the Postman collection to complete this portion of the lab. The
requests and responses have been included below for reference.

Attention: Some response content has been removed for brevity.

1. Create an HTTP Monitor

An HTTP POST to the /mgmt/tm/ltm/monitor/http endpoint with a body containing the monitor con-
figuration creates a monitor.

Request

POST https://{{big_ip_a_mgmt}}/mgmt/tm/ltm/monitor/http

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"name":"hackazon_monitor",
"send":"GET /\r\n"

}

Example Response

{
"kind": "tm:ltm:monitor:http:httpstate",
"name": "hackazon_monitor",
"partition": "Common",
"fullPath": "/Common/hackazon_monitor",
"generation": 0,
"selfLink": "https://localhost/mgmt/tm/ltm/monitor/http/~Common~hackazon_monitor?

→˓ver=13.0.0",
"adaptive": "disabled",
"adaptiveDivergenceType": "relative",
"adaptiveDivergenceValue": 25,
"adaptiveLimit": 200,
"adaptiveSamplingTimespan": 300,
"defaultsFrom": "/Common/http",

193

"destination": "*:*",
"interval": 5,
"ipDscp": 0,
"manualResume": "disabled",
"reverse": "disabled",
"send": "GET / HTTP/\r\n",
"timeUntilUp": 0,
"timeout": 16,
"transparent": "disabled",
"upInterval": 0

}

2. Create a Pool

An HTTP POST to the /mgmt/tm/ltm/pool endpoint with a body containing the configuration creates a
pool with a node(s).

Request

POST https://{{big_ip_a_mgmt}}/mgmt/tm/ltm/pool

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"name":"hackazon_pool",
"monitor":"/Common/hackazon_monitor",
"members": ["10.1.20.10:80"]

}

Example Response

{
"kind": "tm:ltm:pool:poolstate",
"name": "hackazon_pool",
"partition": "Common",
"fullPath": "/Common/hackazon_pool",
"generation": 10781,
"selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~hackazon_pool?ver=13.0.0",
"allowNat": "yes",
"allowSnat": "yes",
"ignorePersistedWeight": "disabled",
"ipTosToClient": "pass-through",
"ipTosToServer": "pass-through",
"linkQosToClient": "pass-through",
"linkQosToServer": "pass-through",
"loadBalancingMode": "round-robin",
"minActiveMembers": 0,
"minUpMembers": 0,
"minUpMembersAction": "failover",
"minUpMembersChecking": "disabled",
"monitor": "/Common/hackazon_monitor ",
"queueDepthLimit": 0,

194

"queueOnConnectionLimit": "disabled",
"queueTimeLimit": 0,
"reselectTries": 0,
"serviceDownAction": "none",
"slowRampTime": 10,
"membersReference": {

"link": "https://localhost/mgmt/tm/ltm/pool/~Common~hackazon_pool/members?
→˓ver=13.0.0",

"isSubcollection": true
}

}

3. Create a HTTP Profile

An HTTP POST to the /mgmt/tm/ltm/profile/http endpoint with a body containing the configuration
creates a profile.

Request

POST https://{{big_ip_a_mgmt}}/mgmt/tm/ltm/profile/http

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"name":"hackazon_http_profile",
"insertXforwardedFor":"enabled",
"serverAgentName":"hackazon"

}

Example Response

{
"kind": "tm:ltm:profile:http:httpstate",
"name": "hackazon_http_profile",
"partition": "Common",
"fullPath": "/Common/hackazon_http_profile",
"generation": 10783,
"selfLink": "https://localhost/mgmt/tm/ltm/profile/http/~Common~hackazon_http_

→˓profile?ver=13.0.0",
"acceptXff": "disabled",
"appService": "none",
"basicAuthRealm": "none",
"defaultsFrom": "/Common/http",
"defaultsFromReference": {

"link": "https://localhost/mgmt/tm/ltm/profile/http/~Common~http?ver=13.0.0"
},
"description": "none",
"encryptCookies": [],
"insertXforwardedFor": "enabled",
"serverAgentName": "hackazon"

}

195

4. Create a TCP profile

An HTTP POST to the /mgmt/tm/ltm/profile/tcp endpoint with a body containing the configuration
creates a TCP profile.

Request

POST https://{{big_ip_a_mgmt}}/mgmt/tm/ltm/profile/tcp

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"name":"hackazon_tcp_clientside_profile",
"nagle":"disabled",
"sendBufferSize":"16000"

}

Example Response

{
"kind": "tm:ltm:profile:tcp:tcpstate",
"name": "hackazon_tcp_clientside_profile",
"partition": "Common",
"fullPath": "/Common/hackazon_tcp_clientside_profile",
"generation": 10784,
"selfLink": "https://localhost/mgmt/tm/ltm/profile/tcp/~Common~hackazon_tcp_

→˓clientside_profile?ver=13.0.0",
"abc": "enabled",
"ackOnPush": "enabled",
"appService": "none",
"autoProxyBufferSize": "disabled",
"autoReceiveWindowSize": "disabled",
"autoSendBufferSize": "disabled",
"closeWaitTimeout": 5,
"cmetricsCache": "enabled",
"cmetricsCacheTimeout": 0,
"congestionControl": "high-speed",
"defaultsFrom": "/Common/tcp",
"defaultsFromReference": {

"link": "https://localhost/mgmt/tm/ltm/profile/tcp/~Common~tcp?ver=13.0.0"
},
"keepAliveInterval": 1800,
"nagle": "disabled",
"sendBufferSize": 16000

}

5. Create a Virtual Server

An HTTP POST to the /mgmt/tm/ltm/virtual endpoint with a body containing the configuration creates
a virtual server.

Request

196

POST https://{{big_ip_a_mgmt}}/mgmt/tm/ltm/virtual

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"name":"hackazon_vs",
"destination":"10.1.10.10:80",
"ipProtocol":"tcp",
"pool":"hackazon_pool",
"sourceAddressTranslation": { "type":"automap" },
"profiles": [

{ "name":"/Common/hackazon_tcp_clientside_profile", "context":"clientside" },
{ "name":"/Common/tcp-wan-optimized", "context":"serverside" },
"/Common/hackazon_http_profile"

]
}

Example Response

Note: The profiles for this virtual server is a subcollection. This collection can be access by performing a
GET on the profiles endpoint for this specific virtual server https://{{big_ip_a_mgmt}}/mgmt/tm/
ltm/virtual/~Common~hackazon_vs/profiles.

{
"kind": "tm:ltm:virtual:virtualstate",
"name": "hackazon_vs",
"partition": "Common",
"fullPath": "/Common/hackazon_vs",
"generation": 10785,
"selfLink": "https://localhost/mgmt/tm/ltm/virtual/~Common~hackazon_vs?ver=13.0.0

→˓",
"addressStatus": "yes",
"autoLasthop": "default",
"cmpEnabled": "yes",
"connectionLimit": 0,
"destination": "/Common/10.1.10.20:80",
"enabled": true,
"gtmScore": 0,
"ipProtocol": "tcp",
"mask": "255.255.255.255",
"mirror": "disabled",
"mobileAppTunnel": "disabled",
"nat64": "disabled",
"pool": "/Common/hackazon_pool",
"poolReference": {

"link": "https://localhost/mgmt/tm/ltm/pool/~Common~hackazon_pool?ver=13.0.0"
},
"rateLimit": "disabled",
"rateLimitDstMask": 0,
"rateLimitMode": "object",
"rateLimitSrcMask": 0,

197

"serviceDownImmediateAction": "none",
"source": "0.0.0.0/0",
"sourceAddressTranslation": {

"type": "automap"
},
"sourcePort": "preserve",
"synCookieStatus": "not-activated",
"translateAddress": "enabled",
"translatePort": "enabled",
"vlansDisabled": true,
"vsIndex": 9,
"policiesReference": {

"link": "https://localhost/mgmt/tm/ltm/virtual/~Common~hackazon_vs/policies?
→˓ver=13.0.0",

"isSubcollection": true
},
"profilesReference": {

"link": "https://localhost/mgmt/tm/ltm/virtual/~Common~hackazon_vs/profiles?
→˓ver=13.0.0",

"isSubcollection": true
}

}

6. Retrieve VS information

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/ltm/virtual/~Common~hackazon_vs/

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:ltm:virtual:virtualstate",
"name": "hackazon_vs",
"partition": "Common",
"fullPath": "/Common/hackazon_vs",
"generation": 10785,
"selfLink": "https://localhost/mgmt/tm/ltm/virtual/~Common~hackazon_vs?ver=13.0.0

→˓",
"addressStatus": "yes",
"autoLasthop": "default",
"cmpEnabled": "yes",
"connectionLimit": 0,
"destination": "/Common/10.1.10.20:80",
"enabled": true,
"gtmScore": 0,
"ipProtocol": "tcp",
"mask": "255.255.255.255",
"mirror": "disabled",
"mobileAppTunnel": "disabled",
"nat64": "disabled",
"pool": "/Common/hackazon_pool",

198

"poolReference": {
"link": "https://localhost/mgmt/tm/ltm/pool/~Common~hackazon_pool?ver=13.0.0"

},
"rateLimit": "disabled",
"rateLimitDstMask": 0,
"rateLimitMode": "object",
"rateLimitSrcMask": 0,
"serviceDownImmediateAction": "none",
"source": "0.0.0.0/0",
"sourceAddressTranslation": {

"type": "automap"
},
"sourcePort": "preserve",
"synCookieStatus": "not-activated",
"translateAddress": "enabled",
"translatePort": "enabled",
"vlansDisabled": true,
"vsIndex": 9,
"policiesReference": {

"link": "https://localhost/mgmt/tm/ltm/virtual/~Common~hackazon_vs/policies?
→˓ver=13.0.0",

"isSubcollection": true
},
"profilesReference": {

"link": "https://localhost/mgmt/tm/ltm/virtual/~Common~hackazon_vs/profiles?
→˓ver=13.0.0",

"isSubcollection": true
}

}

7. Validate the virtual server

Click on the Hackazon bookmark in the Chrome toolbar and validate that the Hackazon web site is now
accessible.

4.3 Module 2: Programmatic Control of Firewall Services

• Provision AFM module on BIG-IP

• Interact with AFM related REST endpoints on a BIG-IP

• Create and modify an AFM address list

• Create and modify an AFM policy

4.3.1 Lab 2.1: Provisioning AFM

Overview

In this lab, the iControl REST API will be used to provision a module on the BIG-IP. More specifically, the
Advanced Firewall Manager (AFM) module will be provisioned for use in Module 2: Configuring AFM
(Advanced Firewall Module).

199

Specific Instructions

Prior to performing the below steps, validate the {{module}} Postman environment variable. The {{mod-
ule}} should be set to afm.

Follow the below steps in order found in the Postman collection to complete this portion of the lab. The
requests and responses have been included below for reference.

Attention: Some response content has been removed for brevity.

1. Retrieve all module provision states

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/sys/provision

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

Note: The afm module is currently provisioned for none while the ltm module is provisioned for nominal.

{
"kind": "tm:sys:provision:provisioncollectionstate",
"selfLink": "https://localhost/mgmt/tm/sys/provision?ver=13.0.0",
"items": [

{
"kind": "tm:sys:provision:provisionstate",
"name": "afm",
"fullPath": "afm",
"generation": 5609,
"selfLink": "https://localhost/mgmt/tm/sys/provision/afm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "none",
"memoryRatio": 0

},
{

"kind": "tm:sys:provision:provisionstate",
"name": "ltm",
"fullPath": "ltm",
"generation": 1,
"selfLink": "https://localhost/mgmt/tm/sys/provision/ltm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "nominal",
"memoryRatio": 0

}
]

}

200

2. Retrieve single module provision state

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/sys/provision/{{module}}

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

Note: The afm module should still be provisioned after performing the steps in Lab 1.

{
"kind": "tm:sys:provision:provisionstate",
"name": "afm",
"fullPath": "afm",
"generation": 5609,
"selfLink": "https://localhost/mgmt/tm/sys/provision/afm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "none",
"memoryRatio": 0

}

3.1. Provision module (OPTIONAL)

Warning: This step is optional and should only be performed if afm is not provisioned.

The afm module is provisioned using an HTTP PATCH with a body containing a provisioning level to the
REST endpoint for mgmt/tm/sys/provision/{{module}}.

Note: Performing a provision/deprovion operation takes some time to complete. If the original request is
still being processed, the below error may be encountered.

{
"code": 400,
"message": "01071003:3: A previous provisioning operation is in progress. Try

→˓again when the BIGIP is active.",
"errorStack": [],
"apiError": 3

}

Request

PATCH https://{{big_ip_a_mgmt}}/mgmt/tm/sys/provision/{{module}}

Headers

201

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"level":"nominal"

}

Example Response

Note: The afm module has been provisioned with a level of nominal.

{
"kind": "tm:sys:provision:provisionstate",
"name": "afm",
"fullPath": "afm",
"generation": 10636,
"selfLink": "https://localhost/mgmt/tm/sys/provision/afm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "nominal",
"memoryRatio": 0

}

3.2. Deprovision module

This request will serve as an example of how to deprovision a BIG-IP module.

Request

PATCH https://{{big_ip_a_mgmt}}/mgmt/tm/sys/provision/{{module}}

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"level":"none"

}

Example Response

{
"kind": "tm:sys:provision:provisionstate",
"name": "afm",
"fullPath": "afm",
"generation": 10714,
"selfLink": "https://localhost/mgmt/tm/sys/provision/afm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "none",

202

"memoryRatio": 0
}

3.3. Re-provision module

Re-provision the afm module if previously deprovisioned.

Request

PATCH https://{{big_ip_a_mgmt}}/mgmt/tm/sys/provision/{{module}}

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"level":"nominal"

}

Example Response

{
"kind": "tm:sys:provision:provisionstate",
"name": "afm",
"fullPath": "afm",
"generation": 10636,
"selfLink": "https://localhost/mgmt/tm/sys/provision/afm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "nominal",
"memoryRatio": 0

}

4.3.2 Lab 2.2: Create AFM Address List

Overview

In this lab, the iControl REST based API will be used to create an address list that will be used with an AFM
policy in a later lab.

Specific Instructions

Follow the below steps in order found in the Postman collection to complete this portion of the lab. The
requests and responses have been included below for reference.

Attention: Some response content has been removed for brevity.

203

1. List Firewall Policies

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/policy

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

Note: A test policy has already been created on the BIG-IP for demonstration purposes.

{
"kind": "tm:security:firewall:policy:policycollectionstate",
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy?ver=13.0.0",
"items": [

{
"kind": "tm:security:firewall:policy:policystate",
"name": "block_all",
"partition": "Common",
"fullPath": "/Common/block_all",
"generation": 5789,
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~Common~

→˓block_all?ver=13.0.0",
"rulesReference": {

"link": "https://localhost/mgmt/tm/security/firewall/policy/~Common~
→˓block_all/rules?ver=13.0.0",

"isSubcollection": true
}

}
]

}

2. List all Firewall Address Lists

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/address-list

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

Note: A test address list has already been created on the BIG-IP for demonstration purposes.

{
"kind": "tm:security:firewall:address-list:address-listcollectionstate",
"selfLink": "https://localhost/mgmt/tm/security/firewall/address-list?ver=13.0.0",
"items": [

204

{
"kind": "tm:security:firewall:address-list:address-liststate",
"name": "test_address_list",
"partition": "Common",
"fullPath": "/Common/test_address_list",
"generation": 6326,
"selfLink": "https://localhost/mgmt/tm/security/firewall/address-list/~

→˓Common~test_address_list?ver=13.0.0",
"addresses": [

{
"name": "1.1.1.1"

}
]

}
]

}

3. Create an Address List

An HTTP POST to the /mgmt/tm/security/firewall/address-list/ endpoint with a body con-
taining the configuration creates an address list that can be used with a firewall policy.

Request

POST https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/address-list/

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"name": "google-dns_address_list",
"addresses": [

{
"name": "8.8.4.4"

}
]

}

Example Response

Note: Copy the name of the address list, highlighted below, from the response into the afm_address_list
Postman environment variable.

{
"kind": "tm:security:firewall:address-list:address-liststate",
"name": "google-dns_address_list",
"partition": "Common",
"fullPath": "/Common/google-dns_address_list",
"generation": 11436,
"selfLink": "https://localhost/mgmt/tm/security/firewall/address-list/~Common~

→˓google-dns_address_list?ver=13.0.0",

205

"addresses": [
{

"name": "8.8.4.4"
}

]
}

4. List Single Firewall Address List

Note: Ensure that the afm_address_list Postman environment variable has been populated with the
name of the address list.

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/address-list/{{afm_address_
→˓list}}

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:security:firewall:address-list:address-liststate",
"name": "google-dns_address_list",
"partition": "Common",
"fullPath": "/Common/google-dns_address_list",
"generation": 11436,
"selfLink": "https://localhost/mgmt/tm/security/firewall/address-list/~Common~

→˓google-dns_address_list?ver=13.0.0",
"addresses": [

{
"name": "8.8.4.4"

}
]

}

5. Update Firewall Address List

An HTTP PATCH to the /mgmt/tm/security/firewall/address-list/{{afm_address_list}}
endpoint with a body containing all addresses that should exist in the address list will update this collection.

Request

PATCH https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/address-list/{{afm_address_
→˓list}}

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

206

Note: Include the contents of the address list plus the new address(es) to ensure that the contents are not
overwritten.

Body

Warning: When patching an address list, be sure to include all addresses (e.g. existing and new) to
ensure that the list does not get overwritten.

{
"addresses": [

{
"name": "8.8.4.4"

},
{

"name": "8.8.8.8"
}

]
}

Example Response

{
"kind": "tm:security:firewall:address-list:address-liststate",
"name": "google-dns_address_list",
"partition": "Common",
"fullPath": "/Common/google-dns_address_list",
"generation": 11436,
"selfLink": "https://localhost/mgmt/tm/security/firewall/address-list/~Common~

→˓google-dns_address_list?ver=13.0.0",
"addresses": [

{
"name": "8.8.4.4"

},
{

"name": "8.8.8.8"
}

]
}

4.3.3 Lab 2.3: Create AFM Policy

Overview

In this lab, the iControl REST based API will be used to create a firewall policy that will leverage the previ-
ously created address list.

Specific Instructions

Follow the below steps in order found in the Postman collection to complete this portion of the lab. The
requests and responses have been included below for reference.

207

Attention: Some response content has been removed for brevity.

1. List AFM policies

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/policy

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:security:firewall:policy:policycollectionstate",ƒ
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy?ver=13.0.0",
"items": [

{
"kind": "tm:security:firewall:policy:policystate",
"name": "block_all",
"partition": "Common",
"fullPath": "/Common/block_all",
"generation": 5789,
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~Common~

→˓block_all?ver=13.0.0",
"rulesReference": {

"link": "https://localhost/mgmt/tm/security/firewall/policy/~Common~
→˓block_all/rules?ver=13.0.0",

"isSubcollection": true
}

}
]

}

2. Create AFM policy

An HTTP POST to the /mgmt/tm/security/firewall/policy endpoint with a body containing just a
policy name creates a firewall policy.

Request

POST https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/policy

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"name": "global_default_deny"

}

208

Example Response

Note: Copy the full policy name as it appears in the "selfLink": "https://localhost/mgmt/
tm/security/firewall/policy/~Common~global_default_deny?ver=13.0.0" line of the re-
sponse and populate the {{afm_policy}} Postman environment variable. In this case, the name of the
policy is ~Common~global_default_deny.

{
"kind": "tm:security:firewall:policy:policystate",
"name": "global_default_deny",
"partition": "Common",
"fullPath": "/Common/global_default_deny",
"generation": 11451,
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~Common~global_

→˓default_deny?ver=13.0.0",
"rulesReference": {

"link": "https://localhost/mgmt/tm/security/firewall/policy/~Common~global_
→˓default_deny/rules?ver=13.0.0",

"isSubcollection": true
}

}

3. List AFM policy rules

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/policy/{{afm_policy}}/rules

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

Note: There will be no rules listed in the newly created policy. Rules are populated in the "items": []
sub collection.

{
"kind": "tm:security:firewall:policy:rules:rulescollectionstate",
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~Common~global_

→˓default_deny/rules?ver=13.0.0",
"items": []

}

4. Add default deny rule to policy

An HTTP POST to the /mgmt/tm/security/firewall/policy/{{afm_policy}}/rules endpoint
with a body containing a new rule will add the rule to the firewall policy.

Request

209

POST https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/policy/{{afm_policy}}/rules

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"name": "default_deny",
"fullPath": "default_deny",
"action": "drop",
"ipProtocol": "any",
"iruleSampleRate": 1,
"log": "no",
"status": "enabled",
"destination": { }
"place-before": "none"

}

Example Response

{
"kind": "tm:security:firewall:policy:rules:rulesstate",
"name": "default_deny",
"fullPath": "default_deny",
"generation": 11464,
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~Common~global_

→˓default_deny/rules/default_deny?ver=13.0.0",
"action": "drop",
"ipProtocol": "any",
"iruleSampleRate": 1,
"log": "no",
"status": "enabled",
"destination": {},
"source": {

"identity": {}
}

}

5. Add address list rule to policy

An HTTP POST to the /mgmt/tm/security/firewall/policy/{{afm_policy}}/rules endpoint
with a body containing a new rule will add the rule to the firewall policy. The status of the rule can be
specified when the POST is made.

Request

POST https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/policy/{{afm_policy}}/rules

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

210

Body

{
"name": "allow_google-dns",
"fullPath": "allow_google-dns",
"action": "accept",
"ipProtocol": "any",
"iruleSampleRate": 1,
"log": "no",
"status": "enabled",
"placeBefore": "default_deny",
"destination": {

"addressLists": [
"/Common/google-dns_address_list"
]

}
}

Example Response

Note: Copy the newly created rule name allow_google-dns and populate the {{afm_policy_rule}} Post-
man environment variable.

{
"kind": "tm:security:firewall:policy:rules:rulesstate",
"name": "allow_google-dns",
"fullPath": "allow_google-dns",
"generation": 13210,
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~Common~global_

→˓default_deny/rules/allow_google-dns?ver=13.0.0",
"action": "accept",
"ipProtocol": "any",
"iruleSampleRate": 1,
"log": "no",
"status": "enabled",
"destination": {

"addressLists": [
"/Common/google-dns_address_list"
],
"addressListsReference": [
{

"link": "https://localhost/mgmt/tm/security/firewall/address-list/~Common~
→˓allow_google-dns?ver=13.0.0"

}
]

},
"source": {

"identity": {}
}

}

6. List policy rules

The "items" sub collection will now be populated with the all the firewall rules when performing an HTTP
GET on the rules endpoint of the {{afm_policy}}.

211

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/policy/{{afm_policy}}/rules

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:security:firewall:policy:rules:rulescollectionstate",
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~Common~global_

→˓default_deny/rules?ver=13.0.0",
"items": [

{
"kind": "tm:security:firewall:policy:rules:rulesstate",
"name": "allow_google-dns",
"fullPath": "allow_google-dns",
"generation": 11483,
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~

→˓Common~global_default_deny/rules/allow_google-dns?ver=13.0.0",
"action": "accept",
"ipProtocol": "any",
"iruleSampleRate": 1,
"log": "yes",
"status": "enabled",
"destination": {

"addressLists": [
"/Common/google-dns_address_list"
],
"addressListsReference": [
{

"link": "https://localhost/mgmt/tm/security/firewall/address-
→˓list/~Common~google-dns_address_list?ver=13.0.0"

}
]

},
"source": {

"identity": {}
}

},
{

"kind": "tm:security:firewall:policy:rules:rulesstate",
"name": "default_deny",
"fullPath": "default_deny",
"generation": 11464,
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~

→˓Common~global_default_deny/rules/default_deny?ver=13.0.0",
"action": "drop",
"ipProtocol": "any",
"iruleSampleRate": 1,
"log": "no",
"status": "enabled",
"destination": {},
"source": {

"identity": {}
}

}

212

]
}

7. Disable Policy rule

An HTTP PATCH to the /mgmt/tm/security/firewall/policy/{{afm_policy}}/rules/
{{afm_policy_rule}} endpoint with a body containing a name of an existing rule can set the
"status": "disabled" to deactivate a single rule.

Request

PATCH https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/policy/{{afm_policy}}/rules/
→˓{{afm_policy_rule}}

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"status": "disabled"

}

Example Response

{
"kind": "tm:security:firewall:policy:rules:rulesstate",
"name": "allow_google-dns",
"fullPath": "allow_google-dns",
"generation": 11470,
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~Common~global_

→˓default_deny/rules/allow_google-dns?ver=13.0.0",
"action": "accept",
"ipProtocol": "any",
"iruleSampleRate": 1,
"log": "no",
"status": "disabled",
"destination": {

"addressLists": [
"/Common/google-dns_address_list"

],
"addressListsReference": [

{
"link": "https://localhost/mgmt/tm/security/firewall/address-list/~

→˓Common~google-dns_address_list?ver=13.0.0"
}

]
},
"source": {

"identity": {}
}

}

213

8. List policy rule

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/security/firewall/policy/{{afm_policy}}/rules/{
→˓{afm_policy_rule}}

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:security:firewall:policy:rules:rulesstate",
"name": "allow_google-dns",
"fullPath": "allow_google-dns",
"generation": 11483,
"selfLink": "https://localhost/mgmt/tm/security/firewall/policy/~Common~global_

→˓default_deny/rules/allow_google-dns?ver=13.0.0",
"action": "accept",
"ipProtocol": "any",
"iruleSampleRate": 1,
"log": "yes",
"status": "disabled",
"destination": {

"addressLists": [
"/Common/google-dns_address_list"
],
"addressListsReference": [
{

"link": "https://localhost/mgmt/tm/security/firewall/address-list/~Common~
→˓google-dns_address_list?ver=13.0.0"

}
]

},
"source": {

"identity": {}
}

}

4.4 Module 3: Programmatic Control of Web Application Firewall Ser-
vices

• Provision ASM module on BIG-IP

• Interact with ASM related REST endpoints on a BIG-IP

• Create and modify an ASM policy

• Apply the ASM policy to a virtual server

214

4.4.1 Lab 3.1: Provisioning ASM

Overview

In this lab, the iControl REST API will be used to provision a module on the BIG-IP. More specifically, the
Application Security Manager (ASM) module will be provisioned for use in Module 3: Configuring ASM
(Application Security Module).

Specific Instructions

Prior to performing the steps below, validate the {{module}} Postman environment variable. The {{mod-
ule}} should be set to asm.

Follow the below steps in order found in the Postman collection to complete this portion of the lab. The
requests and responses have been included below for reference.

Attention: Some response content has been removed for brevity.

1. Deprovision AFM module

This request is will serve as an example of how to deprovision a BIG-IP module.

Request

PATCH https://{{big_ip_a_mgmt}}/mgmt/tm/sys/provision/afm

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"level":"none"

}

Example Response

{
"kind": "tm:sys:provision:provisionstate",
"name": "afm",
"fullPath": "afm",
"generation": 10714,
"selfLink": "https://localhost/mgmt/tm/sys/provision/afm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "none",
"memoryRatio": 0

}

215

2. Retrieve all module provision states

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/sys/provision

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

Note: The asm module is currently provisioned for none while the ltm module is provisioned for nominal.

{
"kind": "tm:sys:provision:provisioncollectionstate",
"selfLink": "https://localhost/mgmt/tm/sys/provision?ver=13.0.0",
"items": [

{
"kind": "tm:sys:provision:provisionstate",
"name": "asm",
"fullPath": "asm",
"generation": 5609,
"selfLink": "https://localhost/mgmt/tm/sys/provision/asm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "none",
"memoryRatio": 0

},
{

"kind": "tm:sys:provision:provisionstate",
"name": "ltm",
"fullPath": "ltm",
"generation": 1,
"selfLink": "https://localhost/mgmt/tm/sys/provision/ltm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "nominal",
"memoryRatio": 0

}
]

}

3. Retrieve single module provision state

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/sys/provision/{{module}}

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

216

Note: The asm module is currently not provisioned.

{
"kind": "tm:sys:provision:provisionstate",
"name": "asm",
"fullPath": "asm",
"generation": 5609,
"selfLink": "https://localhost/mgmt/tm/sys/provision/asm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "none",
"memoryRatio": 0

}

4. Provision ASM module

The asm module is provisioned using an HTTP PATCH with a body containing a provisioning level to the
REST endpoint for mgmt/tm/sys/provision/{{module}}.

Request

PATCH https://{{big_ip_a_mgmt}}/mgmt/tm/sys/provision/{{module}}

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"level":"nominal"

}

Example Response

Note: The asm module has been provisioned with a level of nominal.

{
"kind": "tm:sys:provision:provisionstate",
"name": "asm",
"fullPath": "asm",
"generation": 10636,
"selfLink": "https://localhost/mgmt/tm/sys/provision/asm?ver=13.0.0",
"cpuRatio": 0,
"diskRatio": 0,
"level": "nominal",
"memoryRatio": 0

}

217

4.4.2 Lab 3.2: Interact with ASM

Overview

In this lab, the iControl REST based API will be used to explore some of the ASM related endpoints.

Specific Instructions

Follow the below steps in order found in the Postman collection to complete this portion of the lab. The
requests and responses have been included below for reference.

Attention: Some response content has been removed for brevity.

1.0. Retrieve ASM resources

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:asm:asmcollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm?ver=13.0.0",
"items": [

{
"reference": {

"link": "https://localhost/mgmt/tm/asm/policies?ver=13.0.0"
}

},
{
"reference": {

"link": "https://localhost/mgmt/tm/asm/server-technologies?ver=13.0.0"
}

}
]

}

1.1. Retrieve ASM server technologies

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/server-technologies

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

218

Example Response

{
"kind": "tm:asm:server-technologies:server-technologycollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm/server-technologies?ver=13.0.0",
"totalItems": 40,
"items": [

{
"serverTechnologyDisplayName": "jQuery",
"serverTechnologyName": "jQuery",
"logoFileName": "jquery.png",
"lastUpdateMicros": 1476919661000000,
"description": "jQuery is a cross-platform JavaScript library designed to

→˓simplify the client-side scripting of HTML.",
"kind": "tm:asm:server-technologies:server-technologystate",
"serverTechnologyReferences": [],
"selfLink": "https://localhost/mgmt/tm/asm/server-technologies/9ZC0_aLDC-

→˓KN08jDyvXHew?ver=13.0.0",
"id": "9ZC0_aLDC-KN08jDyvXHew"

},
{

"serverTechnologyDisplayName": "Java Servlets/JSP",
"serverTechnologyName": "Java Servlets/JSP",
"logoFileName": "java.png",
"lastUpdateMicros": 1476919661000000,
"description": "A Java servlet is a Java program that extends the

→˓capabilities of a server.",
"kind": "tm:asm:server-technologies:server-technologystate",
"serverTechnologyReferences": [],
"selfLink": "https://localhost/mgmt/tm/asm/server-technologies/

→˓9ySigIBMpBbYU4r8FNAt4g?ver=13.0.0",
"id": "9ySigIBMpBbYU4r8FNAt4g"

}
]

}

2.0. Retrieve ASM policies

A test policy named test_asm_policy has already been created on the BIG-IP for demonstration pur-
poses.

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

Note: Copy the ASM policy hash as it appears in the "link": "https://localhost/mgmt/tm/
asm/policies/W-w3q351kYbr1A9OEaUOag/plain-text-profiles?ver=13.0.0", line of the re-
sponse and populate the {{asm_policy_hash}} Postman environment variable.

219

{
"kind": "tm:asm:policies:policycollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm/policies?ver=13.0.0",
"totalItems": 1,
"items": [

{
"plainTextProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/
→˓plain-text-profiles?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/
→˓data-guard?ver=13.0.0"

}
]

}

2.1. Retrieve ASM policy

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies/{{asm_policy_hash}}

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"plainTextProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/plain-
→˓text-profiles?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/data-
→˓guard?ver=13.0.0"

},
"createdDatetime": "2017-06-02T04:37:22Z",
"cookieSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/cookie-
→˓settings?ver=13.0.0"

},
"versionLastChange": " Security Policy /Common/test_asm_policy [add]: Type was

→˓set to Security.\nEncoding Selected was set to false.\nApplication Language was set
→˓to utf-8.\nCase Sensitivity was set to Case Sensitive.\nTemplate was set to POLICY_
→˓TEMPLATE_FUNDAMENTAL.\nActive was set to false.\nDifferentiate between HTTP and
→˓HTTPS URLs was set to Protocol Specific.\nPolicy Name was set to /Common/test_asm_
→˓policy.\nEnforcement Mode was set to Blocking. { audit: policy = /Common/test_asm_
→˓policy, username = admin, client IP = 192.168.2.111 }",

"name": "test_asm_policy",
"caseInsensitive": false,
"headerSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/header-
→˓settings?ver=13.0.0"

220

},
"versionPolicyName": "/Common/test_asm_policy",
"generalReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/
→˓general?ver=13.0.0"

}
}

3. Search for ASM policy

An HTTP GET to the /mgmt/tm/asm/policies endpoint with a parameter of filter=name eq test,
allows ASM policies to be searched by name.

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies?filter=name eq test

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"plainTextProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/plain-
→˓text-profiles?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/data-
→˓guard?ver=13.0.0"

},
"createdDatetime": "2017-06-02T04:37:22Z",
"cookieSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/cookie-
→˓settings?ver=13.0.0"

},
"versionLastChange": " Security Policy /Common/test_asm_policy [add]: Type was

→˓set to Security.\nEncoding Selected was set to false.\nApplication Language was set
→˓to utf-8.\nCase Sensitivity was set to Case Sensitive.\nTemplate was set to POLICY_
→˓TEMPLATE_FUNDAMENTAL.\nActive was set to false.\nDifferentiate between HTTP and
→˓HTTPS URLs was set to Protocol Specific.\nPolicy Name was set to /Common/test_asm_
→˓policy.\nEnforcement Mode was set to Blocking. { audit: policy = /Common/test_asm_
→˓policy, username = admin, client IP = 192.168.2.111 }",

"name": "test_asm_policy",
"caseInsensitive": false,
"headerSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/header-
→˓settings?ver=13.0.0"

},
"versionPolicyName": "/Common/test_asm_policy",
"generalReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/
→˓general?ver=13.0.0"

}
}

221

4.0. List ASM tasks

An HTTP GET to the /mgmt/tm/asm/tasks/ endpoint lists the various ASM related tasks that can be
performed via the iControl REST API.

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/tasks/

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:asm:tasks",
"selfLink": "https://localhost/mgmt/tm/asm/tasks?ver=13.0.0",
"items": [

{
"reference": {

"link": "https://localhost/mgmt/tm/asm/tasks/export-policy?ver=13.0.0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/resolve-vulnerabilities?

→˓ver=13.0.0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/check-signatures?ver=13.

→˓0.0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/terminate-vulnerability-

→˓assessment?ver=13.0.0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/apply-server-

→˓technologies?ver=13.0.0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/associate-xml-validation-

→˓files-to-xml-profile?ver=13.0.0"
}

},
{

"reference": {

222

"link": "https://localhost/mgmt/tm/asm/tasks/export-policy-template?
→˓ver=13.0.0"

}
},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/export-requests?ver=13.0.

→˓0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/initiate-vulnerability-

→˓assessment?ver=13.0.0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/import-policy-template?

→˓ver=13.0.0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/update-signatures?ver=13.

→˓0.0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/import-policy?ver=13.0.0"

}
},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/bulk?ver=13.0.0"

}
},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/get-vulnerability-

→˓assessment-subscriptions?ver=13.0.0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/apply-policy?ver=13.0.0"

}
},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/export-signatures?ver=13.

→˓0.0"
}

},
{

"reference": {
"link": "https://localhost/mgmt/tm/asm/tasks/import-vulnerabilities?

→˓ver=13.0.0"

223

}
}

]
}

4.1. List specific ASM task

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/tasks/export-policy

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:asm:tasks:export-policy:export-policy-taskcollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm/tasks/export-policy?ver=13.0.0",
"totalItems": 0,
"items": []

}

5. Retrieve ASM policy templates

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policy-templates

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:asm:policy-templates:policy-templatecollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm/policy-templates?ver=13.0.0",
"totalItems": 32,
"items": [

{
"policyType": "security",
"name": "POLICY_TEMPLATE_SHAREPOINT_2007_HTTP",
"description": "Generic template for SharePoint 2007 (http)",
"kind": "tm:asm:policy-templates:policy-templatestate",
"templateType": "application-ready",
"selfLink": "https://localhost/mgmt/tm/asm/policy-templates/jmHjN-Fpm-

→˓SGwYQsrZp57A?ver=13.0.0",
"templateDefaults": {

"caseInsensitive": true,
"learningSpeed": {
"untrustedTrafficSiteChangeTracking": {

"maxDaysBetweenSamples": 7,
"differentSources": 10,

224

"minMinutesBetweenSamples": 5
},
"untrustedTrafficLoosen": {

"maxDaysBetweenSamples": 7,
"differentSources": 20,
"minHoursBetweenSamples": 1

},
"trustedTrafficSiteChangeTracking": {

"maxDaysBetweenSamples": 7,
"differentSources": 1,
"minMinutesBetweenSamples": 0

},
"trustedTrafficLoosen": {

"maxDaysBetweenSamples": 7,
"differentSources": 1,
"minHoursBetweenSamples": 0

},
"trafficTighten": {

"minDaysBetweenSamples": 1,
"totalRequests": 15000,
"maxModificationSuggestionScore": 50

}
},
"enforcementReadinessPeriod": 7,
"learningMode": "disabled",
"applicationLanguage": "utf-8",
"enforcementMode": "transparent",
"signatureStaging": true,
"type": "security",
"protocolIndependent": false

},
"title": "SharePoint 2007 (http)",
"id": "jmHjN-Fpm-SGwYQsrZp57A"
}

]
}

6. Retrieve ASM signature sets

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/signature-sets

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:asm:signature-sets:signature-setcollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm/signature-sets?ver=13.0.0",
"totalItems": 29,
"items": [

{
"filter": {

225

"riskFilter": "all",
"accuracyFilter": "all",
"userDefinedFilter": "all",
"lastUpdatedFilter": "all",
"accuracyValue": "all",
"riskValue": "all",
"signatureType": "all"

},
"isUserDefined": false,
"name": "Generic Detection Signatures",
"assignToPolicyByDefault": true,
"lastUpdateMicros": 0,
"kind": "tm:asm:signature-sets:signature-setstate",
"selfLink": "https://localhost/mgmt/tm/asm/signature-sets/pBeUaadz6x-Z55_

→˓GkLxfsg?ver=13.0.0",
"defaultAlarm": true,
"systems": [

{
"systemReference": {

"link": "https://localhost/mgmt/tm/asm/signature-systems/
→˓EStDgGiP9nSPgKBhSlDyvQ?ver=13.0.0"

}
},
{
"systemReference": {

"link": "https://localhost/mgmt/tm/asm/signature-systems/
→˓rMiBJmL6DLmnfmW_pXHmdw?ver=13.0.0"

}
},
{
"systemReference": {

"link": "https://localhost/mgmt/tm/asm/signature-systems/
→˓b9hI1sIulARJ09bbdy0VQw?ver=13.0.0"

}
}

],
"id": "pBeUaadz6x-Z55_GkLxfsg",
"type": "filter-based",
"signatureReferences": [

{
"link": "https://localhost/mgmt/tm/asm/signatures/nHU-8zUxj8ldUevwMgFpvw?

→˓ver=13.0.0"
},
{
"link": "https://localhost/mgmt/tm/asm/signatures/RTFj6E66sH7g7XMa9ihQOQ?

→˓ver=13.0.0"
}

],
"category": "User-defined",
"defaultBlock": true,
"defaultLearn": true
}

]
}

226

7. Retrieve ASM signature systems

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/signature-systems

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:asm:signature-systems:signature-systemcollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm/signature-systems?ver=13.0.0",
"totalItems": 44,
"items": [

{
"kind": "tm:asm:signature-systems:signature-systemstate",
"selfLink": "https://localhost/mgmt/tm/asm/signature-systems/

→˓EStDgGiP9nSPgKBhSlDyvQ?ver=13.0.0",
"name": "General Database",
"id": "EStDgGiP9nSPgKBhSlDyvQ"

},
{

"kind": "tm:asm:signature-systems:signature-systemstate",
"selfLink": "https://localhost/mgmt/tm/asm/signature-systems/

→˓rMiBJmL6DLmnfmW_pXHmdw?ver=13.0.0",
"name": "Various systems",
"id": "rMiBJmL6DLmnfmW_pXHmdw"

}
]

}

8. Retrieve ASM attack types

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/attack-types

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:asm:attack-types:attack-typecollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm/attack-types?ver=13.0.0",
"totalItems": 37,
"items": [

{
"kind": "tm:asm:attack-types:attack-typestate",
"selfLink": "https://localhost/mgmt/tm/asm/attack-types/9yL3q5_

→˓pO0E3pK1Uz9x2cw?ver=13.0.0",
"name": "Remote File Include",
"id": "9yL3q5_pO0E3pK1Uz9x2cw",

227

"description": "Remote File Inclusion attacks allow attackers to run
→˓arbitrary code on a vulnerable website."

},
{

"kind": "tm:asm:attack-types:attack-typestate",
"selfLink": "https://localhost/mgmt/tm/asm/attack-types/

→˓ufg0smEkZrpmkoDHfSPGdQ?ver=13.0.0",
"name": "Non-browser Client",
"id": "ufg0smEkZrpmkoDHfSPGdQ",
"description": "An attempt is made by a non-browser client to explore the

→˓site."
}

]
}

9. Retrieve ASM policy urls

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies/{{asm_policy_hash}}/urls

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:asm:policies:urls:urlcollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/urls?

→˓ver=13.0.0",
"totalItems": 2,
"items": [

{
"protocol": "http",
"wildcardIncludesSlash": true,
"lastLearnedNewEntityDatetime": "2017-06-02T04:37:25Z",
"html5CrossOriginRequestsEnforcement": {

"enforcementMode": "disabled"
},
"kind": "tm:asm:policies:urls:urlstate",
"selfLink": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/

→˓urls/faiefv884qtHRU3Qva2AbQ?ver=13.0.0",
"methodsOverrideOnUrlCheck": false,
"id": "faiefv884qtHRU3Qva2AbQ",
"isAllowed": true,
"metacharsOnUrlCheck": false,
"name": "*",
"lastUpdateMicros": 1496378251000000,
"description": "",
"parameterReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/
→˓urls/faiefv884qtHRU3Qva2AbQ/parameters?ver=13.0.0",

"isSubCollection": true
},
"attackSignaturesCheck": true,

228

"signatureOverrides": [],
"clickjackingProtection": false,
"urlContentProfiles": [

{
"headerValue": "*",
"headerName": "*",
"headerOrder": "default",
"type": "apply-value-and-content-signatures"
},
{
"headerValue": "*form*",
"headerName": "Content-Type",
"headerOrder": "1",
"type": "form-data"
},
{
"contentProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-
→˓w3q351kYbr1A9OEaUOag/json-profiles/X8FbXF48VWJ5Tecp5ATd4A?ver=13.0.0"

},
"headerValue": "*json*",
"headerName": "Content-Type",
"headerOrder": "2",
"type": "json"
},
{
"contentProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-
→˓w3q351kYbr1A9OEaUOag/xml-profiles/jwQd_XYZPfNGYnc3l7P4Pg?ver=13.0.0"

},
"headerValue": "*xml*",
"headerName": "Content-Type",
"headerOrder": "3",
"type": "xml"
}

],
"performStaging": true,
"type": "wildcard",
"wildcardOrder": 2
},
{
"protocol": "https",
"wildcardIncludesSlash": true,
"lastLearnedNewEntityDatetime": "2017-06-02T04:37:25Z",
"html5CrossOriginRequestsEnforcement": {

"enforcementMode": "disabled"
},
"kind": "tm:asm:policies:urls:urlstate",
"selfLink": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/

→˓urls/N_a3D1S7OKDehYEPb-mgCg?ver=13.0.0",
"methodsOverrideOnUrlCheck": false,
"id": "N_a3D1S7OKDehYEPb-mgCg",
"isAllowed": true,
"metacharsOnUrlCheck": false,
"name": "*",
"lastUpdateMicros": 1496378251000000,
"description": "",
"parameterReference": {

229

"link": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/
→˓urls/N_a3D1S7OKDehYEPb-mgCg/parameters?ver=13.0.0",

"isSubCollection": true
},
"attackSignaturesCheck": true,
"signatureOverrides": [],
"clickjackingProtection": false,
"urlContentProfiles": [

{
"headerValue": "*",
"headerName": "*",
"headerOrder": "default",
"type": "apply-value-and-content-signatures"
},
{
"headerValue": "*form*",
"headerName": "Content-Type",
"headerOrder": "1",
"type": "form-data"
},
{
"contentProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-
→˓w3q351kYbr1A9OEaUOag/json-profiles/X8FbXF48VWJ5Tecp5ATd4A?ver=13.0.0"

},
"headerValue": "*json*",
"headerName": "Content-Type",
"headerOrder": "2",
"type": "json"
},
{
"contentProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/W-
→˓w3q351kYbr1A9OEaUOag/xml-profiles/jwQd_XYZPfNGYnc3l7P4Pg?ver=13.0.0"

},
"headerValue": "*xml*",
"headerName": "Content-Type",
"headerOrder": "3",
"type": "xml"
}

],
"performStaging": true,
"type": "wildcard",
"wildcardOrder": 1
}

]
}

10. Retrieve ASM policy signature sets

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies/{{asm_policy_hash}}/signature-sets

Headers

230

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"kind": "tm:asm:policies:signature-sets:signature-setcollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/

→˓signature-sets?ver=13.0.0",
"totalItems": 1,
"items": [

{
"signatureSetReference": {

"link": "https://localhost/mgmt/tm/asm/signature-sets/pBeUaadz6x-Z55_
→˓GkLxfsg?ver=13.0.0"

},
"lastUpdateMicros": 1496378251000000,
"selfLink": "https://localhost/mgmt/tm/asm/policies/W-w3q351kYbr1A9OEaUOag/

→˓signature-sets/xMpCOKC5I4INzFCab3WEmw?ver=13.0.0",
"kind": "tm:asm:policies:signature-sets:signature-setstate",
"alarm": true,
"block": true,
"id": "xMpCOKC5I4INzFCab3WEmw",
"learn": true
}

]
}

4.4.3 Lab 3.3: Create ASM Policy

Overview

In this lab, the iControl REST based API will be used to create both an ASM parent and child policy.

Specific Instructions

Follow the below steps in order found in the Postman collection to complete this portion of the lab. The
requests and responses have been included below for reference.

Attention: Some response content has been removed for brevity.

1. Retrieve ASM policy

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

231

{
"kind": "tm:asm:policies:policycollectionstate",
"selfLink": "https://localhost/mgmt/tm/asm/policies?ver=13.0.0",
"totalItems": 1,
"items": [

{
"plainTextProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/8JuF2s3Lb26BYwLXpaHLIg/
→˓plain-text-profiles?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/8JuF2s3Lb26BYwLXpaHLIg/
→˓data-guard?ver=13.0.0"

}
]

}

2.0. Create ASM parent policy

An HTTP POST to the /mgmt/tm/asm/policies endpoint with a body containing basic policy config-
uration including "type":"parent" will create a new ASM parent policy which can then be used for
inheritance when a child policy is created.

Request

POST https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"name":"API_ASM_POLICY_TEST",
"description":"Test ASM policy",
"applicationLanguage":"utf-8",
"type":"parent",
"enforcementMode":"transparent",
"protocolIndependent":"true",
"learningMode":"disabled",
"serverTechnologyName": "Unix/Linux"

}

Example Response

Note: Copy the ASM policy hash for the newly created policy and populate the {{asm_policy_hash}}
Postman environment variable. The hash in the example below is JEQPVWeJcdso_rEC7Xxo6Q

{
"historyRevisionReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/
→˓history-revisions?ver=13.0.0",

232

"isSubCollection": true
},
"childPolicyCount": 0,
"responsePageReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/
→˓response-pages?ver=13.0.0",

"isSubCollection": true
},
"policyBuilderReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/policy-
→˓builder?ver=13.0.0"

},
"serverTechnologyReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/server-
→˓technologies?ver=13.0.0",

"isSubCollection": true
},
"blockingSettingReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/
→˓blocking-settings?ver=13.0.0",

"isSubCollection": true
},
"hostNameReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/host-
→˓names?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/data-
→˓guard?ver=13.0.0"

},
"selfLink": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q?ver=13.

→˓0.0",
"signatureReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/
→˓signatures?ver=13.0.0",

"isSubCollection": true
},
"filetypeReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/
→˓filetypes?ver=13.0.0",

"isSubCollection": true
},
"createdDatetime": "2017-05-30T15:02:11Z",
"modifierName": "",
"id": "JEQPVWeJcdso_rEC7Xxo6Q",
"subPath": "/Common",
"name": "API_ASM_POLICY_TEST",
"caseInsensitive": false,
"headerSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/header-
→˓settings?ver=13.0.0"

}
}

233

2.1. Retrieve ASM parent policy

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies/{{asm_policy_hash}}

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"historyRevisionReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/
→˓history-revisions?ver=13.0.0",

"isSubCollection": true
},
"childPolicyCount": 0,
"responsePageReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/
→˓response-pages?ver=13.0.0",

"isSubCollection": true
},
"policyBuilderReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/policy-
→˓builder?ver=13.0.0"

},
"serverTechnologyReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q/server-
→˓technologies?ver=13.0.0",

"isSubCollection": true
}

}

3.0. Create ASM child policy

An HTTP POST to the /mgmt/tm/asm/policies endpoint with a body containing basic policy configu-
ration including "parentPolicyName": "/Common/API_ASM_POLICY_TEST" will create a new child
policy which inherits a base configuration from the specified parent.

Request

POST https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"name":"API_ASM_POLICY_CHILD_TEST",
"description":"Test ASM policy",
"applicationLanguage":"utf-8",
"parentPolicyName": "/Common/API_ASM_POLICY_TEST",

234

"enforcementMode":"transparent",
"protocolIndependent":"true",
"learningMode":"automatic",
"learningSpeed":"slow",
"serverTechnologyName": "Apache Tomcat"

}

Example Response

Note: Take note of the ASM policy hash for the newly created policy. Copy this value into your Postman’s
collection environmental variable for {{asm_policy_hash}}

The hash in the example below is zD8sehzULw6Ni7GJG2XwJQ

{
"plainTextProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/plain-
→˓text-profiles?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/data-
→˓guard?ver=13.0.0"

},
"createdDatetime": "2017-05-30T15:45:59Z",
"cookieSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/cookie-
→˓settings?ver=13.0.0"

},
"name": "API_ASM_POLICY_CHILD_TEST",
"caseInsensitive": false,
"headerSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/header-
→˓settings?ver=13.0.0"

},
"sectionReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/
→˓sections?ver=13.0.0",

"isSubCollection": true
},
"loginPageReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/login-
→˓pages?ver=13.0.0",

"isSubCollection": true
},
"description": "Test ASM policy",
"fullPath": "/Common/API_ASM_POLICY_CHILD_TEST",
"policyBuilderParameterReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/policy-
→˓builder-parameter?ver=13.0.0"

},
"hasParent": true,
"partition": "Common",
"parentPolicyReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q?ver=13.
→˓0.0"

235

}
}

3.1. Retrieve ASM child policy

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies/{{asm_policy_hash}}

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"plainTextProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/plain-
→˓text-profiles?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/data-
→˓guard?ver=13.0.0"

},
"createdDatetime": "2017-05-30T15:45:59Z",
"cookieSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/cookie-
→˓settings?ver=13.0.0"

},
"versionLastChange": " Security Policy /Common/API_ASM_POLICY_CHILD_TEST [add]:

→˓Parent Policy was set to /Common/API_ASM_POLICY_TEST.\nType was set to Security.
→˓\nEncoding Selected was set to true.\nApplication Language was set to utf-8.\nCase
→˓Sensitivity was set to Case Sensitive.\nSecurity Policy Description was set to
→˓Fundamental Policy.\nLearning Mode was set to Automatic.\nActive was set to false.
→˓\nDifferentiate between HTTP and HTTPS URLs was set to Protocol Specific.\nPolicy
→˓Name was set to /Common/API_ASM_POLICY_CHILD_TEST.\nEnforcement Mode was set to
→˓Blocking. { audit: policy = /Common/API_ASM_POLICY_CHILD_TEST, username = admin,
→˓client IP = 192.168.2.112 }",

"name": "API_ASM_POLICY_CHILD_TEST",
"caseInsensitive": false,
"headerSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/header-
→˓settings?ver=13.0.0"

},
"sectionReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/
→˓sections?ver=13.0.0",

"isSubCollection": true
},
"loginPageReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/login-
→˓pages?ver=13.0.0",

"isSubCollection": true
},
"description": "Test ASM policy",

236

"fullPath": "/Common/API_ASM_POLICY_CHILD_TEST",
"policyBuilderParameterReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/policy-
→˓builder-parameter?ver=13.0.0"

},
"hasParent": true,
"partition": "Common",
"parentPolicyReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q?ver=13.
→˓0.0"

},
"webScrapingReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/web-
→˓scraping?ver=13.0.0"

},
"csrfProtectionReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/csrf-
→˓protection?ver=13.0.0"

},
"policyAntivirusReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/
→˓antivirus?ver=13.0.0"

},
"kind": "tm:asm:policies:policystate",
"virtualServers": [],
"policyBuilderCookieReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/policy-
→˓builder-cookie?ver=13.0.0"

}
}

4.4.4 Lab 3.4: Apply ASM Policy to VS

Overview

In this lab, the previously created ASM policy will be applied to a virtual server using the iControl REST API.

Specific Instructions

Follow the below steps in order found in the Postman collection to complete this portion of the lab. The
requests and responses have been included below for reference.

Attention: Some response content has been removed for brevity.

1. Apply ASM Policy to VS

An HTTP PATCH to the /mgmt/tm/asm/policies/{{asm_policy_hash}} endpoint with a body con-
taining the name of a virtual server(s), in this case "virtualServers":["/Common/hackazon_vs"],
will apply the ASM policy.

Request

237

PATCH https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies/{{asm_policy_hash}}

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"virtualServers":["/Common/hackazon_vs"]

}

Example Response

{
"plainTextProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/plain-
→˓text-profiles?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/data-
→˓guard?ver=13.0.0"

},
"createdDatetime": "2017-05-30T15:45:59Z",
"cookieSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/cookie-
→˓settings?ver=13.0.0"

},
"versionLastChange": " Security Policy /Common/API_ASM_POLICY_CHILD_TEST [add]:

→˓Parent Policy was set to /Common/API_ASM_POLICY_TEST.\nType was set to Security.
→˓\nEncoding Selected was set to true.\nApplication Language was set to utf-8.\nCase
→˓Sensitivity was set to Case Sensitive.\nSecurity Policy Description was set to
→˓Fundamental Policy.\nLearning Mode was set to Automatic.\nActive was set to false.
→˓\nDifferentiate between HTTP and HTTPS URLs was set to Protocol Specific.\nPolicy
→˓Name was set to /Common/API_ASM_POLICY_CHILD_TEST.\nEnforcement Mode was set to
→˓Blocking. { audit: policy = /Common/API_ASM_POLICY_CHILD_TEST, username = admin,
→˓client IP = 192.168.2.112 }",

"name": "API_ASM_POLICY_CHILD_TEST",
"caseInsensitive": false,
"headerSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/header-
→˓settings?ver=13.0.0"

},
"sectionReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/
→˓sections?ver=13.0.0",

"isSubCollection": true
},
"loginPageReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/login-
→˓pages?ver=13.0.0",

"isSubCollection": true
},
"description": "Test ASM policy",
"fullPath": "/Common/API_ASM_POLICY_CHILD_TEST",
"policyBuilderParameterReference": {

238

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/policy-
→˓builder-parameter?ver=13.0.0"

},
"hasParent": true,
"partition": "Common",
"parentPolicyReference": {

"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q?ver=13.
→˓0.0"

},
}

2. Retrieve ASM policy

Request

GET https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies/{{asm_policy_hash}}

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"plainTextProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/plain-
→˓text-profiles?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/data-
→˓guard?ver=13.0.0"

},
"createdDatetime": "2017-05-30T15:45:59Z",
"cookieSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/cookie-
→˓settings?ver=13.0.0"

},
"versionLastChange": "Policy Building Settings Policy Building Settings [update]:

→˓Internal Statistics have been updated { audit: policy = /Common/API_ASM_POLICY_
→˓CHILD_TEST, component = Policy Builder }",

"name": "API_ASM_POLICY_CHILD_TEST",
"caseInsensitive": false,
"headerSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/header-
→˓settings?ver=13.0.0"

}
}

3. Remove ASM Policy from VS

An HTTP PATCH to the /mgmt/tm/asm/policies/{{asm_policy_hash}} endpoint with a body re-
moving the name of a virtual server(s), in this case "virtualServers":[""], will remove the ASM policy
from the absent virtual serves.

239

Request

PATCH https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies/{{asm_policy_hash}}

Headers

Content-Type: application/json
X-F5-Auth-Token: {{big_ip_a_auth_token}}

Body

{
"virtualServers":[""]

}

Example Response

{
"plainTextProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/plain-
→˓text-profiles?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/data-
→˓guard?ver=13.0.0"

},
"createdDatetime": "2017-05-30T15:45:59Z",
"cookieSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/cookie-
→˓settings?ver=13.0.0"

},
"versionLastChange": "Policy Building Settings Policy Building Settings [update]:

→˓Internal Statistics have been updated { audit: policy = /Common/API_ASM_POLICY_
→˓CHILD_TEST, component = Policy Builder }",

"name": "API_ASM_POLICY_CHILD_TEST",
"caseInsensitive": false,
"headerSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/header-
→˓settings?ver=13.0.0"

},
"sectionReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/
→˓sections?ver=13.0.0",

"isSubCollection": true
},
"loginPageReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/login-
→˓pages?ver=13.0.0",

"isSubCollection": true
},
"description": "Test ASM policy",
"fullPath": "/Common/API_ASM_POLICY_CHILD_TEST",
"policyBuilderParameterReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/policy-
→˓builder-parameter?ver=13.0.0"

},
"hasParent": true,
"partition": "Common",

240

"parentPolicyReference": {
"link": "https://localhost/mgmt/tm/asm/policies/JEQPVWeJcdso_rEC7Xxo6Q?ver=13.

→˓0.0"
}

}

4. Delete ASM policy

An HTTP DELETE to the /mgmt/tm/asm/policies/{{asm_policy_hash}} endpoint will delete the
ASM policy from the BIG-IP.

Request

DELETE https://{{big_ip_a_mgmt}}/mgmt/tm/asm/policies/{{asm_policy_hash}}

Headers

X-F5-Auth-Token: {{big_ip_a_auth_token}}

Example Response

{
"plainTextProfileReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/plain-
→˓text-profiles?ver=13.0.0",

"isSubCollection": true
},
"dataGuardReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/data-
→˓guard?ver=13.0.0"

},
"createdDatetime": "2017-05-30T15:45:59Z",
"cookieSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/cookie-
→˓settings?ver=13.0.0"

},
"versionLastChange": "Policy Building Settings Policy Building Settings [update]:

→˓Internal Statistics have been updated { audit: policy = /Common/API_ASM_POLICY_
→˓CHILD_TEST, component = Policy Builder }",

"name": "API_ASM_POLICY_CHILD_TEST",
"caseInsensitive": false,
"headerSettingsReference": {

"link": "https://localhost/mgmt/tm/asm/policies/zD8sehzULw6Ni7GJG2XwJQ/header-
→˓settings?ver=13.0.0"

}
}

241

242

5
HOWTOs: Index

This section contains useful HOWTOs

5.1 HOWTO - Update Existing iApp templates to Work with iWorkflow
v2.1

This HOWTO document describes the minimal changes required to update an existing iApp template and
add a version number to the template name.

Adding the version number allows the iApp template to be used by iWorkflow v2.1 and later. Versioning is
required to enable iApp templates to be installed across many BIG-IP devices in a production-safe manner.

Without version information it is possible that iApp templates could be overwritten leading to deployment
failures and/or outages.

5.1.1 Task 1 - Export the existing iApp from BIG-IP

The iApp template can be exported from a BIG-IP system where it has been installed. The file has a .tmpl
extension and is a plaintext, readable format.

Complete the following steps:

1. Login to the BIG-IP GUI with admin credentials

2. Click iApps -> Templates

3. Find the desired template in the list and click the template name to open it

4. Scroll to the bottom of the page and click the ‘Export’ button

5. Click the Download: ... button and save the file to your computer

5.1.2 Task 2 - Edit the Exported template

We will now edit the template name to add a version number. iWorkflow currently supports the following
formats:

• template_name_v1.0_0

243

• template_name.v.1.0.0

• /<partition>/template_name.v1.0.0

Complete the following steps:

1. Open the previously saved .tmpl file in a text editor

2. Perform a text search for sys application template

Example:

1 cli admin-partitions {
2 update-partition Common
3 }
4

5 sys application template my_template_name {
6 actions {
7 definition {
8 implementation {

3. Modify the template name to include a version number using one of the formats specified at the
beginning of this task.

Example:

1 cli admin-partitions {
2 update-partition Common
3 }
4

5 sys application template my_template_name.v1.0.0 {
6 actions {
7 definition {
8 implementation {

4. Save the file

5.1.3 Task 3 - Import the iApp template to iWorkflow

The updated iApp template is now ready to be imported to iWorkflow. Instructions on how to do this can be
found at:

https://devcentral.f5.com/wiki/iWorkflow.iWorkflowOpsGuide_7.ashx

244

https://devcentral.f5.com/wiki/iWorkflow.iWorkflowOpsGuide_7.ashx

6
Appendices

6.1 Appendix A: Python SDK

This module will cover the newly released F5 Python SDK. This SDK is released and maintained as a public
GitHub repository at https://github.com/F5Networks/f5-common-python

The goal of the Python SDK is to provide a simple interface that abstracts many of the F5-specific nuances
of the iControl REST API away from the user. As you learned in Module 1, when interacting directly with
the API, it’s often necessary to build out requests in a very manual fashion. In order to provide a simpler
interface, the SDK was developed to abstract away many of the eccentricities of the API and provide a
clean, Pythonic interface.

For example, when creating a pool in, an Imperative automation model, without the SDK you would be
required to do something like the following (this code is not complete):

import requests
import sys
base_url = "https://10.1.1.4/mgmt/tm/ltm/pool/"

pool_attributes = {
"name": "test_pool",
"partition": "Common",
"loadBalancingMode": "least-connections-member",
"minUpMembers": 1

}

s = requests.session()
s.auth = ("admin", "admin")

resp = s.post(base_url, data=json.dumps(pool_attributes))

if resp.status_code != requests.codes.ok:
print "Error creating pool"

sys.exit(1)

When using the Python SDK the equivalent code is:

from f5.bigip import ManagementRoot

245

https://github.com/F5Networks/f5-common-python

mgmt = ManagementRoot("10.1.1.4","admin","admin")

pool = mgmt.tm.ltm.pools.pool.create(partition="Common", name="test_pool")
pool.loadBalancingMode = "least-connections-member"
pool.minUpMembers = 1

pool.update()

As you can see, the code utilizing the SDK is much more condensed and far easier to read. This is a result
of the SDK exposing abstracted methods to build the URL. Additionally the SDK creates standard CURDLE
(create, update, refresh, delete, load, exists) methods that behave correctly depending on REST object type
(Organizing Collection, Resource, etc.) you are interacting with (e.g., you cannot DELETE an Organizing
Collection, therefore a delete() method is not available).

Full documentation for the API exists at here

For the purpose of this lab, your Windows Jumphost has everything pre-installed, however, since the SDK
is a standard python package the process is trivial on any system (Windows, Linux, Mac, etc.) that has
Python installed.

It’s important to keep in mind, while going through this module, that we are only demonstrating what is
possible with the SDK from a high level. For example, the same scripts used in this module are designed
to run from the command line with arguments, however, they could easily be modified to use JSON files as
the input mechanism.

6.1.1 Lab A.1: create_pool.py

In this lab we will review, line-by-line an example script that has been created to allow creation of a BIG-IP
Pool with Pool Members directly from the command line.

Task 1 - Review create_pool.py

1. Open Notepad++ using the located in the Windows Taskbar.

2. Double click the file create_pool.py in the menu on the left side of the Notepad++ screen

3. We will now review the code line-by-line:

from f5.bigip import ManagementRoot
import pprint
import argparse
pp = pprint.PrettyPrinter(indent=3)

These lines import in various Python libraries. The first line imports the F5 Python SDK. The pprint and
argparse libraries are standard Python libraries that aid in print data to the console and parsing command
line arguments.

parser = argparse.ArgumentParser(description='Script to create a pool on a BIG-IP
→˓device')
parser.add_argument("host", help="The IP/Hostname of the BIG-IP device")
parser.add_argument("pool_name", help="The name of the pool")
parser.add_argument("pool_members", help="A comma seperated string in the format <IP>:
→˓<port>[,<IP>:<port>]")
parser.add_argument("-P", "--partition", help="The partition name", default="Common")
parser.add_argument("-u", "--username", help="The BIG-IP username", default="admin")

246

https://f5-sdk.readthedocs.io

parser.add_argument("-p", "--password", help="The BIG-IP password", default="admin")
args = parser.parse_args()

These lines setup the command line arguments for the script and store those arguments in a python dictio-
nary names ‘args’. The argparse library automatically generates help text, checks for required arguments,
sets defaults, etc.

mgmt = ManagementRoot(args.host, args.username, args.password)

This line creates a new Python object that refers to the BIG-IP device. We are calling the ManagementRoot
method with 3 arguments:

• The value of the host argument

• The value of the username argument

• The value of the password argument

This method automatically performs a test to ensure that we are able to reach the device and authenticate
successfully.

pool_path = "/%s/%s" % (args.partition, args.pool_name)

This line just stores the human-readable path to the pool name for later use

if mgmt.tm.ltm.pools.pool.exists(partition=args.partition, name=args.pool_name):
raise Exception("Pool '%s' already exists" % args.pool_name)

This if statement checks to see if a pool with the same name already exists on the specified partition on the
device. The return value of the exists() method is a Boolean value of True or False. In this case we want
the Exception to execute if a pool DOES exist and stop execution of the script.

pool = mgmt.tm.ltm.pools.pool.create(partition=args.partition, name=args.pool_name)
print "Created pool %s" % pool_path

The first line in this block actually creates the new pool. The partition and name of the pool are specified as
arguments to the create() method and the ‘pool’ variable represents an object that holds the created pool’s
properties. The second line simply prints a message that the pool has been created.

member_list = args.pool_members.split(',')

This line uses a built-in python method called split() to separate the value of the command line argument
into discrete strings using a ‘,’ as a separator. The return type of the split() is a python list (lists = arrays)

for member in member_list:
pool_member = pool.members_s.members.create(partition=args.partition, name=member)
print " Added member %s" % member

This for loop iterates over the elements in the list generated above and creates a new member in the pool.

Task 2 - Run create_pool.py

1. Open Console2 using the icon on the Windows Taskbar

2. The console window automatically opens in the Desktop\Module 5 - Python SDK directory

247

3. Type set PYTHONWARNINGS=ignore to disable the printing of SSL/TLS warnings about self-signed
certificates.

4. Type python create_pool.py and examine the help output:

5. Type python create_pool.py 10.1.1.4 test_pool 10.1.10.10:80,10.1.10.11:80 to
create a new pool:

6. Using Chrome open a tab to BIGIP-A (https://10.1.1.4). Examine the pool that was created.

6.1.2 Lab A.2: read_pool.py

In this lab we will review, line-by-line an example script that has been created to view the attributes of a
BIG-IP Pool directly from the command line.

Task 1 - Review read_pool.py

1. Open read_pool.py in Notepad++

2. We will review the code. For brevity we have removed lines that are common with previous examples:

if not mgmt.tm.ltm.pools.pool.exists(partition=args.partition, name=args.pool_name):
raise Exception("Pool '%s' does not exist" % args.pool_name)

This if statement checks to see if a pool with the same name exists in the specified partition on the device.
The key difference between this and the example in the previous lab is the inclusion of the ‘not’ keyword.
This inverses the logic of the statement so that the Exception is raised when the pool DOES NOT exist

pool = mgmt.tm.ltm.pools.pool.load(partition=args.partition, name=args.pool_name)

This line loads the configuration of the pool into a variable

print "Pool %s:" % pool_path
pp.pprint(pool.raw)

These lines print the human-readable pool path and then uses the PrettyPrint library to dump all the at-
tributes associated with the pool

Task 2 - Run read_pool.py

1. In the command prompt type python read_pool.py 10.1.1.4 test_pool and examine the
output:

248

https://10.1.1.4

2. Notice the various attributes that are associated with the pool. Take note of the value of the
loadBalancingMode attribute for the next lab

6.1.3 Lab A.3: update_pool.py

In this lab we will review, line-by-line an example script that has been created to allow updating any attribute
of a pool using the command-line. This script is a good example of creating generic tools that enable many
use cases. Rather than creating a script that just updates a specific attribute we created one that updates
ANY pool attribute, greatly expanding it’s potential use cases.

Task 1 - Review update_pool.py

1. Open update_pool.py in Notepad++

2. We will review the code. For brevity we have removed lines that are common with previous examples:

pool = mgmt.tm.ltm.pools.pool.load(partition=args.partition, name=args.pool_name)

pp.pprint("Current: %s=%s" % (args.attribute, getattr(pool, args.attribute)))

These lines load the pool from the device and print the current value of the attribute specified on the the
command line. The second line is a little bit tricky because the SDK dynamically populates the objects
attributes based on the type of object (pool, virtual server, etc.). Normally we could just use something like
‘pool.loadBalancingMode’ to get the current lb-method for the pool, however, since this script implements a
way to change ANY attribute in the object we have to dynamically substitute the attribute name at run-time.

249

To do this we use the getattr() python built-in function to resolve the mapping at runtime and return the value
of the attribute specified on the command line.

kwargs = {args.attribute: args.value}

This line creates a new python dictionary with one entry specifying a key-value pair using the command
line arguments. For example if you were updated the loadBalancingMode attribute to ‘least-connections-
member’ the dictionary would look like {“loadBalancingMode”:”least-connections-member”}

pool.update(**kwargs)

The first line updates the pool we loaded previously with the new value for the attribute. The **kwargs
argument to the update() method triggers a special mechanism in python called ‘keyword unpacking’ which
allows us to pass the attribute to be updated to the update() method.

pool.refresh()
pp.pprint("New: %s=%s" % (args.attribute, getattr(pool, args.attribute)))

The first line refreshes the data in the object from the BIG-IP device. The second line prints this refreshed
information to the console so the user can verify the update completed successfully.

Task 2 - Run update_pool.py

1. In the command prompt type python update_pool.py 10.1.1.4 test_pool
loadBalancingMode least-connections-member and examine the output:

2. You can manually verify the load balancing method was changed via TMUI or by re-running
read_pool.py (it’s not required since the line that prints the new value forces a refresh())

3. Experiment with changing other pool attributes

6.1.4 Lab A.4: update_pool_member_state.py

One of the most common tasks asked for by customers is the ability to set a pool member’s state via a
script. We have included an example of such a script in the lab that can be used to see how easy it is to
automate specific operational tasks.

Task 1 - Run update_pool_member_state.py

1. In the command prompt type python update_pool_member_state.py 10.1.1.4
test_pool 10.1.10.10:80 disabled and examine the output.

2. Verify the pool member was disabled via TMUI

3. Re-run the script with as python update_pool_member_state.py --help to see additional
options.

4. Re-enable the pool member using the script

250

6.1.5 Lab A.5: delete_pool.py

In this lab we will review, line-by-line an example script that has been created to allow deletion of a pool
using the command-line.

Task 1 - Review delete_pool.py

1. Open delete_pool.py in Notepad++

2. We will review the code. For brevity we have removed lines that are common with previous examples:

pool = mgmt.tm.ltm.pools.pool.load(partition=args.partition, name=args.pool_name)
pool.delete()

print "Deleted pool %s" % pool_path

These lines should be fairly self-explanatory at this point. First we load the pool and the we delete() it and
print that we have done so.

Task 2 - Run delete_pool.py

1. In the command prompt type python delete_pool.py 10.1.1.4 test_pool and examine the
output:

2. If desired verify the pool was deleted using TMUI or the read_pool.py script (it should return an
error)

6.1.6 Lab A.6: Create a Python Script

In this lab we will use the ‘Generate Code’ feature of Postman to create a python script from a collection of
requests.

Task 1 - Create a simple script

Note: Remember to have the correct environment selected in Postman

Perform the following steps to complete this task:

1. Expand the ‘Lab 5.6 - Create a Python Script’ folder in the Postman collection

2. Click the ‘Step 1 - Create a HTTP Monitor’ item in the collection

3. Click the ‘Code’ link in the Postman window:

251

4. Select Python -> Requests from the menu on the top right of the window:

5. Examine the Python code that was generated. Click the ‘Copy to Clipboard’ button

6. Open a new text file and paste the generated code. We need to modify the line that sends the request
to DISABLE SSL certificate verification. Find the following line:

response = requests.request("POST", url, data=payload, headers=headers)

And add a verify=False option to it:

response = requests.request("POST", url, data=payload, headers=headers,
→˓verify=False)

252

Save the file on your Desktop as lab5_6.py

7. Open a command prompt and run the script by typing python lab5_6.py:

8. Verify the monitor was created on BIG-IP

9. Delete the monitor to prepare for the next task

Task 2 - Chain together multiple requests

In this task we will repeat the process from Task 1 to chain together multiple requests.

Perform the following steps:

1. Repeat the procedure from Task 1 with each of the items in the ‘Lab 5.6’ postman collection. Append
each snippet of code to your existing script until you have all 5 requests in the script. You will need to
remove the duplicate ‘import requests’ lines and update each request with the ‘verify=False’
option.

2. Save the file

3. Run the script and verify the config was created.

6.1.7 Lab A.7: EXTRA CREDIT - Modify create_pool.py

This is an open-ended exercise. Copy create_pool.py to create_vs.py and modify it to create a
Virtual Server. You could also cheat and look at you_cheated.py!

6.1.8 Lab A.8: EXTRA CREDIT - Review super_pool.py

This is an open-ended exercise. Review and run the super_pool.py script. This script allows bulk
creation/deletion of pools using CSV files.

253

	Welcome
	Class 1: Introduction to Automation & Orchestration
	Lab Environments & Topology
	BIG-IP Basics (optional)
	Module 1: Imperative Automation with the BIG-IP iControl REST API
	Module 2: Abstracting Services using iApp Templates
	Module 3: Creating Declarative Service Interfaces with iWorkflow
	Conclusion

	Class 2: Building Continuous Delivery Pipelines
	Module 1: f5-super-netops-container Toolkit
	Module 2: F5 f5-postman-workflows & f5-newman-wrapper
	Module 3: Stitching Workflows from Class 1 into new Orchestratable Collections
	Module 4: Continuous Integration / Continuous Delivery

	Class 3: Introduction to SecDevOps
	Lab Topology
	Module 1: iControl REST API Refresher
	Module 2: Programmatic Control of Firewall Services
	Module 3: Programmatic Control of Web Application Firewall Services

	HOWTOs: Index
	HOWTO - Update Existing iApp templates to Work with iWorkflow v2.1

	Appendices
	Appendix A: Python SDK

