F5 Programmability Training

https://github.com/fSdevcentral/f5-automation-labs/graphs/contributors

Contents:

Welcome 5
Getting Started 7
Lab Environments 9
3.1 RavelloBlueprint. e 9
3.2 Amazon AWS CloudFormation Template 9
Lab Topology 11
Class 1: Introduction to Automation & Orchestration 13
5.1 Module 1: REST API Basics & Device Onboarding 13
5.2 Module 2: iWorkflow e e 37
Class 2: Building Continuous Delivery Pipelines 51
6.1 Module 1: f5-super-netops-container Toolkit 51
6.2 Module 2: f5-postman-workflows & f5-newman-wrapper 60
6.3 Module 3: Stitching Workflows from Class 1 into new Orchestratable Collections 86
6.4 Module 4: Continuous Integration / Continuous Delivery 101
Class 3: Introduction to SecDevOps 119
7.1 LabTopology o o e 120
7.2 Module 1: SecDevOps: Programmatic Defense in Depth with BIG-IP 120
HOWTOs: Index 177
8.1 HOWTO - Update Existing iApp templates to Work with iWorkflowv2.1 177
Appendices 179
9.1 Appendix A: Python SDK L 179

Welcome

Welcome to F5’s Automation, Orchestration and Programmability Training series. The intended audience for
these labs are Super NetOps and DevOps engineers that would like to leverage the various programmability
tools offered by the F5 platform. If you require a pre-built lab environment please contact your F5 account
team and they can provide access to environments on an as-needed basis.

The content contained here leverages a full DevOps CI/CD pipeline and is sourced from the following GitHub
repository:

https://github.com/f5devcentral/f5-automation-labs/

Bugs and Requests for enhancements can be made using by opening an Issue within the repository.

https://github.com/f5devcentral/f5-automation-labs/
https://github.com/f5devcentral/f5-automation-labs/issues

Getting Started

Please follow the instructions provided by the instructor to start your lab and access your jump host.

Note: All work for this lab will be performed exclusively from the Windows jumphost. No installation or
interaction with your local system is required.

Lab Environments

In order to complete this series of training classes you will need to utilize a specific Lab Environment. You
can consume this training in a couple of ways:

* Pre-built Environment using an Ravello Blueprint
— Used at official F5 events such as F5 Agility, F5 Agility Roadshows, User Groups, MeetUps, etc.
— Access can be provided by your F5 Account Team
* Pre-built Environment using an Amazon AWS CloudFormation Template (CFT)
— Access is on-demand and uses your AWS account
+ Self-built Environment on your own infrastructure
— Review the Topology below for details

All pre-built environments implement the Lab Topology shown below.

3.1 Ravello Blueprint

Please follow the instructions provided by your lab instructor to access your lab environment.

3.2 Amazon AWS CloudFormation Template

Warning: The AWS CFT will run in your account. The template includes components and instances
that will incur a charge. This charge will be billed to your account.

Click the link below to start a pre-built lab environment using a CloudFormation template in Amazon AWS:

amazon-aws-lab-environment-guide

10

Lab Topology

The network topology implemented for this lab is very simple. Since the focus of the lab is Control Plane
programmability rather that Data Plane traffic flow we can keep the data plane fairly simple. The following
components have been included in your lab environment:

« 2x F5 BIG-IP VE (vi12.1)

» 1 x F5 iWorkflow VE (v2.1)

* 1 x Linux LAMP Webserver (xubuntu 14.04)
+ 1 x Linux Docker Server (CentOS 7)

* 1 x Windows Jumphost

The following table lists VLANS, IP Addresses and Credentials for all components:

11

Component VLAN/IP Address(es) Credentials
i Administrator/available in instance de-
‘\J/\lljl:qc;)ohvg:t * Management: 10.1.1.250 tails
* Internal: 10.1.10.250
» External: 10.1.20.250
-IP A admin/admin
BIG - Management: 10.1.1.4 nadmi
* Internal: 10.1.10.1
* Internal (Float): 10.1.10.3
» External: 10.1.20.1
- admin/admin
BIG-IP B * Management: 10.1.1.5 I !
* Internal: 10.1.10.2
* Internal (Float): 10.1.10.3
« External: 10.1.20.2
iWorkflow admin/admin

* Management: 10.1.1.6

Linux Server

* Management: 10.1.1.7
* Internal: 10.1.10.10-13

root/default

Docker Server

* Management: 10.1.1.8

root/default

12

Class 1: Introduction to Automation & Orchestration

This introductory class covers the following topics:
 Imperative Automation using the F5 BIG-IP iControl REST API
» Declarative Automation using the F5 iWorkflow product
+ F5 Automation Tools:
— The f5-super-netops-container
— Collections and the f5-postman-workflows extension to Postman

Expected time to complete: 3 hours

5.1 Module 1: REST API Basics & Device Onboarding

In this module you will learn the basic concepts required to interact with the BIG-IP iControl REST API.
Additionally, you will walk through a typical Device Onboarding workflow that results in a fully functional
BIG-IP Active/Standby pair. It's important to note that this module will focus on showing an Imperative
approach to automation.

Note: The Lab Deployment for this lab includes two BIG-IP devices. For most of the labs we will focus on
configuring only the BIG-IP-A device (management IP and licensing have already been completed). BIG-
IP-B already has some minimal configuration loaded. In a real-world environment it would be necessary
to perform Device Onboarding functions on ALL BIG-IP devices. We are only performing them on a single
device in this lab so we are able to cover all topics in the time allotted.

Note: It's beneficial to have GUI/SSH sessions open to BIG-IP and iWorkflow devices while going through
this lab. Feel free to verify the actions taken in the lab against the GUI or SSH. You can also watch the
following logs:

» BIG-IP:

— /var/log/ltm

— /var/log/restjavad.0.log
* iWorkflow:

13

— /var/log/restjavad.0.log

5.1.1 Lab 1.1: Exploring the iControl REST API

Task 1 — Explore the API using the TMOS Web Interface

In this lab we will explore the API using an interface that is built-in to TMOS. This utility is useful for un-
derstanding how TMOS objects map to the REST API. The interfaces implement full Create, Read, Update
and Delete (CRUD) functionality, however, in most practical use cases it’s far easier to use this interface as
a ‘Read’ tool rather than trying to Create objects directly from it. It's usually far easier to use TMUI or TMSH
to create the object as needed and then use this tool to view the created object with all the correct attributes
already populated.

1. Open Google Chrome and navigate to the following bookmarks: BIG-IP A GUI, BIG-IP B GUI and
iWorkflow GUI. Bypass any SSL errors that appear and ensure you see the login screen for each
bookmark.

F D crome A ————
C' | [chrome://chrome-signin/?access_point=08&reason=0

I Apps ig) BIGIPAGUI (g BIGIP ARESTTOC (g BIGIPBGUI ig) BIG-IP B REST TOC 1‘_‘@' iWorkflow GUI 1‘_‘@' iWorkflow REST TOC

\ AN

2. Navigate to the URL https://10.1.1.4/mgmt/toc (or click the BIG-IP A REST TOC bookmark). The
‘/mgmt/toc’ path in the URL is available on all TMOS versions 11.6 or newer.

3. Authenticate to the interface using the default admin/admin credentials.

4. You will now be presented with a top-level list of various REST resources. At the top of the page there
is a search box that can be used to find items on the page. Type ‘net’ in the search box

Table of Contents

net *—-

IControl REST Resources

net *

and then click on the ‘net’ link under iControl REST Resources: 1raic Management

5. Find the /mgmt /tm/net/route-domain Collection and click it.

6. You will now see a listing of the Resources that are part of the route-domain(s) collection. As you can
see the default route domain of 0 is listed. You can also create new objects by clicking the ¥ button.
Additionally resources can be deleted using the T putton or edited using the ' button.

7. Click the 0 resource to view the attributes of route-domain 0 on the device:

14

https://10.1.1.4/mgmt/toc

/mgmt/tm/net/route-domain/~Common~0

name 0
partition Common
fullPath /Common/0

connectionLimit 0
id 0

strict enabled

Take note of the full path to the resource. Here is how the path is broken down:

/ mgmt / tm / net / route-domain / ~Common-~0
| Root | OC | OC | Collection | Resource
*0C=0rganizing Collection

5.1.2 Lab 1.2: REST API Authentication & ‘example’ Templates

One of the many basic concepts related to interaction with REST API’s is how a particular consumer is
authenticated to the system. BIG-IP and iWorkflow support two types of authentication: HTTP BASIC and
Token based. It’'s important to understand both of these authentication mechanisms, as consumers of the
API will often make use of both types depending on the use case. This lab will demonstrate how to interact
with both types of authentication.

Task 1 - Import the Postman Collection & Environment

In this task you will Import a Postman Collection & Environment for this lab. Perform the following steps to
complete this task:

%

1. Open the Postman tool by clicking the icon of the taskbar of your Windows Jumphost

2. Click the ‘Import’ button in the top left of the Postman window

@ Postman

File Edit View Collection History Help

uj Runner Import D

Collections

3. Click the ‘Import from Link’ tab. Paste the following URL into the text box and click ‘Import’

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/
postman_collections/F5_Automation_Orchestration_Intro.postman_collection.
json

15

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/F5_Automation_Orchestration_Intro.postman_collection.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/F5_Automation_Orchestration_Intro.postman_collection.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/F5_Automation_Orchestration_Intro.postman_collection.json

IMPORT X

Import a Postman Collection, Environment, data dump, gffl command, or a RAML /
WADL / Swagger(v1/v2) / Runscope file.

mport From Link

N =

4. You should now see a collection named ‘F5 Automation & Orchestration Intro’ in your Postman Col-
lections sidebar:

-* Collections

F5 Automation & Orchestration Intro €

61 requests

Lab 1.2 - APl Authentication
GET Step 1: HTTP BASIC Authentication
Step 2: Get Authentication Token

Setp 3: Verify Authentication Works

PATCH Step 4: Set Authentication Token Timeout

5. Import the Environment file by clicking ‘Import’ -> ‘Import from Link’ and pasting the following URL
and clicking ‘Import’:

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/
master/postman_collections/INTRO_Automation_Orchestration_Lab.postman_
environment. json

6. To assist in multi-step procedures we make heavy use of the ‘Environments’ capability in Postman.
This capability allows us to set various global variables that are then substituted into a request before
it's sent. Set your environment to ‘INTRO - Automation & Orchestration Lab’ by using the menu at the
top right of your Postman window:

K @ sgnin B £ @

No Environment] o

No Environment \

INTRO - Automation & Orchestration ...

Task 2 — HTTP BASIC Authentication

In this task we will use the Postman tool to send API requests using HTTP BASIC authentication. As its
name implies this method of authentication encodes the user credentials via the existing BASIC authentica-

16

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/INTRO_Automation_Orchestration_Lab.postman_environment.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/INTRO_Automation_Orchestration_Lab.postman_environment.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/INTRO_Automation_Orchestration_Lab.postman_environment.json

tion method provided by the HTTP protocol. The mechanism this method uses is to insert an HTTP header
named ‘Authorization’ with a value that is built by Base 64 encoding the string <username>: <password>.
The resulting header takes this form:

Authorization: Basic YWRtaW4o6YWRtaW4d=

It should be noted that cracking the method of authentication is TRIVIAL; as a result API calls should always
be performed using HTTPS (F5 default) rather than HTTP.

Perform the following steps to complete this task:

1. Click the ‘Collections’ tab on the left side of the screen, expand the ‘F5 Automation & Orchestration
Intro’ collection on the left side of the screen, expand the ‘Lab 1.2 — API Authentication’ folder:

v-* Collections

F5 Automation & Orchestration Intro ©¥

61 renniests

Lab 1.2 - APl Authentication

2. Click the ‘Step 1: HTTP BASIC Authentication’ item. Click the ‘Authorization’ tab and select ‘Basic
Auth’ as the Type. Fill in the username and password (admin/admin) and click the ‘Update Request’
button. Notice that the number of Headers in the Headers tab changed from 1 to 2. This is because
Postman automatically created the HTTP header and updated your request to include it. Click the
‘Headers’ tab and examine the HTTP header:

R - INTRO - Automation & Orches
Step 1: HTTP BASICAL @

» Step 1: HTTP BASIC Authentication

GET https:// /mgmt/tm/ltm Params Send v Save

&

Authorization @ (2)

Type

Password = el e Save helper data to request

: The authorization header will be generated and
Username admin added as a custom header

Show Password

3. Click the ‘Send’ button to send the request. If the request succeeds you should be presented with a
listing of the /mgmt /tm/1tm Organizing Collection.

4. Update the credentials and specify an INCORRECT password. Send the request again and examine
the response:

17

Pretty HTML = Save Response

I

B 1 |<xml version="1.8" encoding="I50-8859-1"2>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.@ Strict//EN"

Task 3 — Token Based Authentication

One of the disadvantages of BASIC Authentication is that credentials are sent with each and every request.
This can result in a much greater attack surface being exposed unnecessarily. As a result Token Based
Authentication (TBA) is preferred in many cases. This method only sends the credentials once, on the
first request. The system then responds with a unique token for that session and the consumer then uses
that token for all subsequent requests. Both BIG-IP and iWorkflow support token-based authentication
that drops down to the underlying authentication subsystems available in TMOS. As a result the system
can be configured to support external authentication providers (RADIUS, TACACS, AD, etc) and those
authentication methods can flow through to the REST API. In this task we will demonstrate TBA using the
local authentication database, however, authentication to external providers is fully supported.

For more information about external authentication providers see the section titled “About external au-
thentication providers with iControl REST” in the iControl REST API User Guide available at https:
//devcentral.f5.com

Perform the following steps to complete this task:
1. Click the ‘Step 2: Get Authentication Token’ item in the Lab 1.2 Postman Collection

2. Notice that we send a POST request to the /mgmt /shared/authn/login endpoint.

POST https://{{big_ip_a_mgmt}}/mgmt/shared/authn/login Params
Headers (1) []
Key Value
Content-Type application/json

3. Click the ‘Body’ tab and examine the JSON that we will send to BIG-IP to provide credentials and the
authentication provider:

> Step 2: Get Authentication Token
POST https://{{big_ip_a_mgmt}}/mgmt/shared/authn/login

(U] Body ®

form-data x-www-form-urlencoded ® raw binary JSON (application/json)

-{
"username":"",
"password":"",
"loginProviderName" : "tmos" k
}

VA WN e

4. Modify the JSON body and add the required credentials (admin/admin). Then click the ‘Send’ button.

5. Examine the response status code. If authentication succeeded and a token was generated the
response will have a 200 OK status code. If the status code is 401 then check your credentials:

Successful:

18

https://devcentral.f5.com
https://devcentral.f5.com

©
a

Body (22) * Status: 200 0K Time: 97

Pretty JSON jys } Save Response
. 2 “username": "admin®,
Unsuccessful:
Body (15) * Status: 401 F5 Authorization Required Time: 2128 ms
Pretty HTML 5 Save Response
B 1 |<xml version="1.8" encoding="I50-8859-1"2>
L] 2 [<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.8 Strict//EN"

. Once you receive a 200 OK status code examine the response body. The various attributes show the
parameters assigned to the particular token. Find the ‘token’ attribute and copy it into your clipboard
(Ctrl+c) for use in the next step:

Body (22)
Pretty JSON =P
2 "username"”: "admin®,
B "loginReference”: {
- "link": "https://localhost/mgmt/cm/system/authn/providers/ 44a68e-11a7-3c51-a49
5 s
B "loginProviderName®: "tmos®,
7 "token™: {
8 | "token": "Q:IXKEHQNEFH35UC3:IREDXHNNDQ|",
9 "name": "QIXK6HOWIFW3ISVCIIRZOXWNNDG" ,
18 "userMame”: "admin",
11 "authProviderName"”: "tmos",
12 ~ "user": {
13 "link": "https://localhost/mgmt/cm/system/authn/providers /tmos/1f44a6@e-11a7-3c51-a
-b832-8b2f4a2523a1"
14 s

. Click the ‘Step 3: Verify Authentication Works’ item in the Lab 1.2 Postman collection. Click the
‘Headers’ tab and paste the token value copied above as the VALUE for the Xx-F5-Auth-Token
header. This header is required to be sent on all requests when using token based authentication.

» Setp 3: Verify Authentication Works

GET https:// /mgmt/tm/Itm Params
Headers (1) ‘
Key Value
X-F5-Auth-Token —* QIXKEHQWZFW35VC3JRZOXWNNDQ)

. Click the ‘Send’ button. If your request is successful you should see a ‘200 OK’ status and a listing of
the 1tm Organizing Collection.

. We will now update your Postman environment to use this auth token for the remainder of the lab.
Click the Environment menu in the top right of the Postman window and click ‘Manage Environments’:

19

10.

11.

12.

13.

INTRO - Automation & Orck o

Manage Environments

Shared Environments

Params Send ¥ Save

Click the ‘INTRO — Automation & Orchestration Lab’ item:

MANAGE ENVIRONMENTS

Manage Environments

INTRO - Automation & Orchestration Lab K m rD i i

Update the value for bigip_a_auth_token by Pasting (Ctrl-v) in your auth token:

MANAGE ENVIRONMENTS X

Manage Environments

Edit Environment

INTRO - Automation & Orchestration Lab

Key Value Bulk Edit
bigip_a_mgmt 10.1.1.4
bigip_b_mgmt 10.1.1.5

iwf_mgmt / 10.1.1.6 /

bigip_a_auth_token QIXK6EHQWZFW35VC3JRZOXWNND Ql

(< << <<

bigip_b_auth_token

Click the ‘Update’ button and then close the ‘Manage Environments’ window. Your subsequent re-
quests will now automatically include the token.

Click the ‘Step 4: Set Authentication Token Timeout’ item in the Lab 1.2 Postman collection. This
request will PATCH your token Resource (check the URI) and update the timeout attribute so we can
complete the lab easily. Examine the request type and JSON Body and then click the ‘Send’ button.
Verify that the timeout has been changed to ‘36000’ in the response:

» Step 4: Set Authentication Token Timeout

PATCH htps://; /mgmt/shared/authz/tokens/:
\ 2) Body ® K
form-data x-www-form-urlencoded ® raw binary JSON (application/json)

i-k
2 "timeout":"36800" *
3}

20

Task 4 — Get a pool ‘example’ Template

In order to assist with REST API interactions you can request a template of the various attributes of a
Resource type in a Collection. This template can then be used as the body of a POST, PUT or PATCH

request as needed.

Perform the following steps:

1. Click the ‘Step 5: Get ‘example’ of a Pool Resource’ item in the Lab 1.2 Postman collection

2. Examine the URI. Notice the addition of example at the end of the collection name:

GET

Authorization

» Step 5: Get 'example’ of a Pool Resource /

/mgmt/tm/ltm/pool/example Params

Q2
(2]

3. Click ‘Send’ and examine the FULL response. You will see descriptions and then all the attributes for

the Pool resource type. The response also shows the default values for the attributes if applicable:

Body

Pretty

37
38
39
40
41
42
43
44
45
46
47
48
49
50 ~
51
52
53
54
55
56
57
58

(25)

JSON =)

pool members that have been up for more than 6@ seconds. After
seconds, it receives approximately three quarters of the new t
useful when used with the least-connections-member load balanc

1,

"allowNat": "yes",
"allowSnat": "yes",
"appService": "",
"autoscaleGroupId": "",
"description": "",
"gatewayFailsafeDevice": "",

"ignorePersistedWeight": "disabled",
"ipTosToClient": "pass-through",

"ipTosToServer": "pass-through",

"linkQosToClient": "pass-through",
"1inkQosToServer": "pass-through",
"loadBalancingMode": "round-robin",

"membersReference": {
"link": "https://localhost/mgmt/tm/1tm/pool/members/example?ver=12
"isSubcollection": true

1,

"metadata": [],

"minActiveMembers": 0,

"minUpMembers": @,

"minUpMembersAction": "failover",

"minUpMembersChecking": "disabled",

5.1.3 Lab 1.3: Review/Set Device Settings

Your BIG-IP-A device is already licensed, so now we can focus on configuring the basic infrastructure related

settings to complete the Device Onboarding process. The remaining items include (list not exhaustive):

» Device Settings

21

NTP/DNS Settings

Remote Authentication

Hostnhame

Admin Credentials
+ L1-3 Networking
— Physical Interface Settings
— L2 Connectivity (VLAN, VXLAN, etc.)
— L3 Connectivity (Self IPs, Routing, etc.)
» HA Settings
— Global Settings
= Config Sync IP
= Mirroring IP
= Failover Addresses
— CMI Device Trusts
— Device Groups
— Traffic Groups
— Floating Self IPs

We will specifically cover the items in BOLD above in the following labs. It should be noted that many
permutations of the Device Onboarding process exist due to the nature of customer environments. This
class is designed to teach enough information so that you can then apply the knowledge learned and help
articulate and/or deliver a specific solution for your environment.

Task 1 — Set Device Hostname & Disable GUI Setup Wizard
In this task we will modify the device hostname and disable the GUI Setup Wizard. The Resource that
contains these settings is /mgmt /tm/sys/global-settings.
Perform the following steps to complete this task:
1. Expand the “Lab 1.3 — Review/Set Device Settings” folder in the Postman collection

2. Click the “Step 1: Get System Global-Settings” item. Click the ‘Send’ button and review the response
body to see what the current settings on the device are.

3. Click the “Step 2: Set System Global-Settings” item. This item uses a PATCH request to the
global-settings resource to modify the attributes contained within it. We will update the
guiSetup and hostname attribute.

* Review the JSON body and modify the ‘hostname’ attribute to set the hosthame to bigip-a.
f5.1ocal

22

* Also notice that we are disabling the GUI Setup Wizard as part of the same request:

» Step 2: Set System Global-Settings

PATCH https:// o P
\ @ Body ®

form-data x-www-form-urle led ® raw

1-k

2 "guiSetup”: "?i;ecled ', k

"hostname": "

A \

4. Click the ‘Send’ button and review the response body. You should see that the attributes modified
above have been updated. You can also GET the global-settings again to verify they have been
updated.

Task 2 — Modify DNS/NTP Settings

Note: This task will make use of JSON arrays. The syntax for defining a JSON array is:
myArray: [Object0, Objectl ... ObjectX]
To define an array consisting of Strings the syntax is:

myStringArray: ["stringO", "stringl" ... "stringX"]

Much like the previous task we can update system DNS and NTP settings by sending a PATCH request to
the correct resource in the ‘sys’ Organizing Collection. The relevant Resources for this task are:

URL Type
/mgmt/tm/sys/dns | DNS Settings
/mgmt /tm/sys/ntp | NTP Settings

Perform the following steps to complete this task:

1. Click the “Step 3: Get System DNS Settings” item in the collection. Click ‘Send’ and review the current
settings

2. Click the “Step 4: Set System DNS Settings” item in the collection. Review the JSON body to verify
the name serverIPs 4.2.2.2 and 8.8. 8. 8 are listed. Additionally add a search domain of ‘f5.local’.
You will modify a JSON array for both of these attributes.

3. Click the ‘Send’ button and verify the requested changes were successfully implemented

4. Click the “Step 5: Get System NTP Settings” item in the collection. Click ‘Send’ and review the current
settings

5. Click the “Step 6: Set System NTP Settings” item in the collection. Review the JSON body to verify
the NTP servers with hostnames 0.pool.ntp.org and 1.pool.ntp.org are contained in the
servers attribute (another JSON array!)

6. Click the ‘Send’ button and verify the requested changes were successfully implemented
Task 3 — Update default user account passwords

In this task we will update the passwords for the ‘root’ and ‘admin’ accounts. The process for updating the
root account is different then other system accounts due to the special nature of the root account.

23

To update the root account password we will use a POST to a shared REST worker at /mgmt /shared/
authn/root

To update all other system accounts we will PATCH the /mgmt /auth/user/<username> Resource
Perform the following steps to change the root user password:
1. Click the “Step 7: Set root User Password” item in the collection.

2. Notice that we a performing a POST operation to a shared REST worker. Modify the JSON body to
update the password to the value “newdefault” and click the ‘Send’ button.

» Step 7: Set root User Password

POST https:// /mgmt/shared/authn/root Params

3. You can verify the password was changed by opening an SSH session using PuTTY to BIG-IP-A.
4. Repeat the procedure above to change the password back to “default”

Perform the following steps to change the admin user password:
1. Click the “Step 8: Set admin User Password” item in the collection.

2. Notice that we a performing a PATCH operation to admin user Resource. Modify the JSON body to
update the password to the value “newadmin” and click the ‘Send’ button.

» Step 8: Set admin User Password

PATCH hetps:// "w‘g‘“_s‘t“‘3,;:}'s‘u:ev: Params

3. You can verify the password was changed by opening an SSH session using PuTTY to BIG-IP-A OR
by logging into TMUI in a Chrome browser tab.

4. Repeat the procedure above to change the password back to “admin”

5.1.4 Lab 1.4: Basic Network Connectivity

This lab will focus on configuration of the following items:
* L1-3 Networking
— Physical Interface Settings
— L2 Connectivity (VLAN, VXLAN, etc.)
— L3 Connectivity (Self IPs, Routing, etc.)

We will specifically cover the items in BOLD above in the following labs. It should be noted that many
permutations of the Device Onboarding process exist due to the nature of customer environments. This

24

class is designed to teach enough information so that you can then apply the knowledge learned and help
articulate and/or deliver a specific solution to your customer.

The following table lists the L2-3 network information used to configure connectivity for BIG-IP-A:

Type Name Details

VLAN Internal Interface: 1.1
Tag: 10

VLAN External Interface: 1.2
Tag: 20

Self IP | Self-Internal | Address: 10.1.10.1/24
VLAN: Internal

Self IP | Self-External | Address: 10.1.20.1/24
VLAN: External

Route | Default Network: 0.0.0.0/0
GW: 10.1.20.254

Task 1 — Create VLANSs

Note: This lab shows how to configure VLAN tags, but does not deploy tagged interfaces. To use tagged
interfaces the tagged attribute needs to have the value t rue

Perform the following steps to configure the VLAN objects/resources:

1.
2.

Expand the “Lab 1.4 — Basic Network Connectivity” folder in the Postman collection.

Click the “Step 1: Create a VLAN” item in the collection. Examine the JSON body; the values for
creating the Internal VLAN have already been populated.

Click the ‘Send’ button to create the VLAN

Repeat Step 1, however, this time modify the JSON body to create the External VLAN using the
parameters in the table above.

Click the “Step 2: Get VLANs” item in the collection. Click the ‘Send’ button to GET the VLAN collec-
tion. Examine the response to make sure both VLANs have been created.

Task 2 — Create Self IPs

Perform the following steps to configure the Self IP objects/resources:

1.

Click the “Step 3: Create a Self IP” item in the collection. Examine the JSON body; the values for
creating the Self-Internal Self IP have already been populated.

Click the ‘Send’ button to create the Self IP

Repeat Step 1, however, this time modify the JSON body to create the Self-External Self IP using the
parameters in the table above.

Click the “Step 4: Get Self IPs” item in the collection. Click the ‘Send’ button to GET the Self IP
collection. Examine the response to make sure both Self IPs have been created.

25

Task 3 — Create Routes

Perform the following steps to configure the Route object/resource:

1. Click the “Step 5: Create a Route” item in the collection. Examine the JSON body; the values for
creating the Default Route have already been populated.

2. Click the ‘Send’ button to create the Route

3. Click the “Step 6: Get Routes” item in the collection. Click the ‘Send’ button to GET the routes
collection. Examine the response to make sure the route has been created.

5.1.5 Lab 1.5: Build a BIG-IP Cluster

In this lab we will build a active-standby cluster between BIG-IP-A and BIG-IP-B. As mentioned previously,
to save time, BIG-IP-B already has already been licensed and had its device level settings configured. This
lab will walk you through creating the cluster step by step. As you will see, complex operations such as
this start to become less effective using the Imperative model of automation. Clustering is one of the
‘transition’ points for most customers to move into the Declarative model (if not already done) due to the
need to abstract device/vendor level specifics from Automation consumers.

The high-level procedure required to create the cluster is:
1. Rename the CMI ‘Self’ Device name to match the hostname of the Device
Set BIGIP-A & BIGIP-B CMI Parameters (Config Sync IP, Failover IPs, Mirroring IP)
Add BIG-IP-B as a trusted peer on BIGIP-A
Check the device_trust_group Sync Group Status
Create a sync-failover Device Group
Check the status of the created Device Group
Perform initial sync of the Device Group
Check status (again)

Change the Traffic Group to use HA Order failover (not required but shown as an example)

© © ® N o g k~ 0w DN

—

Create Floating Self IPs

Task 1 — Rename objects and Setup CMI Global Parameters

In this task we will complete Items 1&2 from the list high-level procedure at the beginning of the lab. One of
the idiosyncrasies of BIG-IP is that when you use the GUI Setup Wizard to set the hostname of the device,
the wizard automatically renames the CMI ‘Self’ device to match the hostname. Since we configured the
hostname via a REST call earlier this action did not take place.

Perform the following steps to rename the CMI ‘Self’ device:
1. Expand the “Lab 1.5 — Build a Cluster” folder in the Postman collection
2. Click the “Step 1: Rename the CMI Self Device’ item in the collection

3. Examine the URI and JSON body. We are sending a POST request to execute the equivalent of
a tmsh mv command to rename the existing object to the /mgmt /tm/cm/device Collection. The
name attribute specifies the current name of the object (the factory default name), while the target
attribute specifies the new name of the object.

4. Click the ‘Send’ button to rename the Resource.

26

5. Change the request type from a POST to a GET and click ‘Send’. Examine the response to make
sure the name was changed successfully.

Perform the following steps to set CMI Device Parameters

1. Click the “Step 2: Set BIGIP-A CMI Device Parameters” item in the collection. Examine the operation
(PATCH), URI and JSON body. We will PATCH the newly renamed object (from the previous step) and
assign the Config Sync IP, Unicast Failover Address/Port and Mirroring IPs:

» Step 2: Set BIGIP-A CMI Device Parameters

PATCH htpsy/ mgmu/tm/cm/device/~Common~bigip-a.f5.loca Params

2. Click the ‘Send’ button and examine the response to ensure the settings were changed

3. Click the “Step 3: Set BIGIP-B CMI Device Parameters” item in the collection. Examine the opera-
tion (PATCH), URI and JSON body. We will PATCH and assign the Config Sync IP, Unicast Failover
Address/Port and Mirroring IPs.

EXTRA CREDIT: How is authentication to BIG-IP-B working if we never got an authentication token?
(Hint: we cheated)

4. Click the ‘Send’ button and examine the response to ensure the settings were changed

Task 2 — Add BIG-IP-B as a Trusted Peer

The CMI subsystem relies on a PKI based device trust model to establish relationships between BIG-IP
systems. In this task we will add BIG-IP-B as a trusted peer of BIG-IP-A. Establishing a trust relationship
is automatically a bi-directional operation. As a result, when we establish the trust relationship, BIG-IP-B
will automatically establish a trust relationship with BIG-IP-A. This task corresponds to items 3&4 in the
high-level procedure.

Perform the following steps to complete this task:
1. Click the “Step 4: Add BIGIP-B Device to CMI Trust on BIGIP-A” item in the collection

2. Examine the operation (POST), URI and JSON body. We are using a special REST worker to add
the device to the CMI trust. Additionally the JSSON body must be specified in a very specific man-
ner to ensure this step completes successfully. To minimize the chance for error the values have
been completed for you already. You should, however, review and understand this step fully before
continuing.

3. Click the ‘Send’ button. The response for this request does NOT indicate success, only that the
command is running.

4. To check for success we have to check the status of the Sync Group named “device_trust_group”. To
do this click the “Step 5: Check Sync Group Status” item in the collection. This request will GET the
sync status for all sync groups on the system

27

5. Click the ‘Send’ button and examine the response. The status should indicate a color of ‘green’, that
bigip-b.f5.local is connected and ‘In Sync’ (please notify an instructor of any issue):

Body (21) Status: 200 ¢

Pretty JSON =

1@

11 - localhost/mgmt/tm/cm/syncStatus/8/details": {

12 - Stats": {

13 ~

14 - /localhost/mgmt/tm/cm/syncStatus/8/details/@": {

15 ~ "nestedStats": {

16~ "entriez”: {

17~ detafils: {

18 "description™: "bigip-b.f5.local: corﬂected"k
19 }

20 }

21 }

e f»

23 - "https://localhost/mgmt/tm/cm/syncStatus/@/details/1": {

24 "nestedSta {

25~ "entri

26~ "detai HIE

27 "description™: “device_trust_group (In Sync): All devices in the device group are in sync”

"description™: "Optional action: Add a device group”

Task 3 — Create a sync-failover Device Group

This task will create a Device Group object that will contain the two BIG-IP systems. The type of device-
group will be a ‘sync-failover’ group, however, ‘sync-only’ groups can also be created with the same proce-
dure but different attribute values. This task corresponds to items 5-8 in the high-level procedure.

Perform the following steps to complete this task

1. Click the “Step 6: Create Device Group” item in the collection. Examine the request type, URL and
JSON body. We will POST to the /mgmt/tm/cm/device-group’ collection and create a new Resource
called DeviceGroup1 that includes both BIG-IP devices and is set to ‘sync-failover’ type. We are also
setting the device-group to ‘autosync’ so manual syncing is not required when configuration changes
occur:

» Step 6: Create Device Group

POST hteps:// /mgmt/tm/cm/device-group Params
\ Pl Body ® \
form-data x-www-form-urlencoded ® raw binary
4 I - c en ed”,
5 "devices": ["bigip-a.f5.local”,"bigip-b.f5.local”] *—
6 1}

28

2. Click the ‘Send’ button and examine the response.

3. To check the status of the device-group we have to check the status of the underlying sync group
on the system. Click the ‘Step 7: Check Sync Group Status’ item in the collection and click ‘Send’.
Examine the response and take note that the system is ‘Awaiting Initial Sync’:

Body (21) Status: 200 OK T

Pretty JSON] Save

-status?ver=12.1.2",

>
"https://localhost/mgmt/tm/cm/syncStatus/@/details": {
es {

{

4~ " st/mgmt/tm/cm/syncStatus/@/details/@": {

: connected”

scription”: "DeviceGroupl (Awaiting Initial Sync): The device group is awaiting the initial config sync™

}
T
}
Ts
"https /mgmt/tm/cm/syncStatus/@/details/2": /

ption": " - Recommended action: Synchronize one of the devices to the group”

4. We will now manually sync DeviceGroup1 to fulfill the need for the Initial Sync. Click the ‘Step 8:
Manually Sync DeviceGroup1’ item in the collection. Examine the request type, URL and JSON body.
We will POST to the /mgmt/tm/cm/config-sync’ worker and tell it to ‘run’ a config-sync of BIG-IP-A
‘to-group’ DeviceGroup1:

» Step 8: Manually Sync DeviceGroup1

POST https:// /mgmt/tm/cm/config-sync Params

www-form-urlencoded ® raw binary

"command »
"options to-group™:"DeviceGroupl™}]

5. Click ‘Send’ to initiate the sync

6. Click the ‘Step 9: Check Sync Group Status’ item in the collection and click the ‘Send’ button. Examine
the response to make sure that DeviceGroup1 is ‘In Sync’. You may have to click ‘Send’ multiple times
as the sync operation can take a while to complete.

Task 4 — Perform Additional Operations

The remainder of the steps show how to manipulate various common items related to the HA config. In this
task we will change the Traffic Group to use the ‘HA Order’ failover method. We will then initiate a failover
and show how to view the status of the traffic-group.

29

Perform the following steps to complete this task:

Click the “Step 10: Get Traffic Group Properties” item in the collection. Examine the URL, we will GET
the attributes of the ‘traffic-group-1’ resource from the traffic-group collection. Click the ‘Send’ button
and review the response.

Click the “Step 11: Change Traffic Group to use HA Order” item in the collection. Examine the request
type, URL and JSON body. We will PATCH the existing resource and specify an ‘haOrder’ attribute to
change the traffic-group behavior.

3. Click the ‘Send’ button and examine the response to verify the change was successful.

Click the “Step 12: Get Traffic Group Failover States” item in the collection and click the ‘Send’ button.
Examine the response and determine which device is ‘active’ for the traffic-group:

Body (21) Status: 200 OK me: 175 ms

I
‘
-
;
:

Pretty

m:traffic-group:traffic-groups

)s://localhost/mgmt/tm/cm/traffic-group/traffic-group-1/stats?ver=12.1.2",

st/mgmt/tm/cm/traffic-group/traffic-group-1/~Common~traffic-group-1:~Common~bigip-a.f5.1local/stats": {

tra group:traffic-group s",
s://localhost/mgmt/tm/cm/traffic-group/traffic-group-1/~Common~traffic-group-1:~Common~bigip-a.f5.local/stats?ver=12

cm:traffic-group:traffic-groupstats”,
"https://localhost/mgmt/tm/cm/traffic-group/traffic-group-1/~Common~traffic-group-1:~Common~bigip-b.f5.local/stats?ver=12

5. Click EITHER the “Step 13A” or “Step 13B” item in the collection depending on which device is ACTIVE

for the traffic group. Notice that we are sending the request to the ACTIVE device for the traffic group.
Examine the JSON body and click the ‘Send’ button.

6. Click the “Step 14: Get Traffic Group Failover States” item in the collection and click the ‘Send’ button.

Examine the response to determine that the failover occurred properly:

30

ne: 118 ms

4 s i »s://localhost/mgmt/tm/cm/traffic-group/traffic-group-1/stats?ver=12.1.2",

ic-group:traffic-groupstats”,
s://localhost/mgmt/tm/cm/traffic-group/traffic-group-1/~Common~traffic-group-1:~Common~bigip-a.f5.local/stats?ver=12

18 ~

11~

1 " "/Common/bigip-a.f5.1local” k
1 15

14~ "failoverState": {

15 " ipti "active” *

16

17 =

1 1 "false"

1

" /Common/traffic-group-1"

group:traffic-groupstats”,
29 "selflLink": "nttps://localhost/mgmt/tm/cm/traffic-group/traffic-group-1/~Common~traffic-group-1:~Common~bigip-b.f5.1local/stats2ver=12

ame”: {
ion": "/Common/bigip-b.f5.local” k—
34~ "failoverState

"description™: "standby” *
I

37~ "nextActive": {
"description™: "true"

Task 5 — Create Floating Self IPs

To complete the HA config we will now create a Floating Self IP on the Internal VLAN.
Perform the following steps to complete this task:

1. Click the “Step 15: Create a Floating Self IP” item in the collection. Examine the request type, URL
and JSON body. We will create a new resource in the /mgmt /tm/net/self collection named ‘Self-
Internal-Floating’ and an IP address of 10.1.10.3.

2. Click the ‘Send’ button and examine the response

3. Click the “Step 16: Get Self IPs” item in the collection and click ‘Send’. Examine the response and
verify the Self IP was created.

5.1.6 Lab 1.6: Build a Basic LTM Config

In this lab we will build a basic LTM Config using the Imperative automation model. While this lab may seem
simple for basic configurations, the complexity involved with rich L4-7 services quickly makes the Imperative
approach untenable for advanced configurations. The Imperative model relies on the user having in-depth
knowledge of device specifics such as:

» Object types and their attributes
— How many different objects/profiles/options do we have?

* Order of operations
— Monitor before pool before profiles before virtual servers, etc.
— What about L7 use cases like WAF?

31

= WAF Policy -> HTTP Policy -> Virtual Server
» How does this all get deleted?
— You have to reverse the order of operations and ‘undo’ the whole config
+ TMOS has lots of issues here

As a result of this it's recommended for customers to use Imperative automation only for legacy environ-
ments. New environments should shift to a Declarative model.

Task 1 — Build a Basic LTM Config

Perform the following steps to complete this task:
1. Expand the “Lab 1.6 — Build a Basic LTM Config” folder in the Postman collection

2. Click each Step in the folder and ‘Send’ the request. Verify each component is created on the BIG-IP
device using the GUL.

3. After the steps are completed you should be able to connect to http://10.1.20.129 in your browser.

5.1.7 Lab 1.7: REST API Transactions

Task 1 — Create a Transaction

In this lab we will create a transaction using the REST API. Transactions are very useful in cases where you
would want discrete REST operations to act as a batch operation. As a result the nature of a transaction is
that either all the operations succeed or none of them do. This is very useful when creating a configuration
that is linked together because it allows the roll back of operations in case one fails. All the commands
issued are queued one after the other in the transaction. We will also review how to change the order of a
queued command or remove a single command from the queued list before commiting.

Perform the following steps to complete this task:

1. Expand the ‘Lab 1.7 — Rest API Transactions’ folder in the Postman collection:

>

F5 Automation & Orchestration Intro 3%

ab 1.1 - REST APl "example’ \

Lab 1.2 - APl Authentication

- Review/5et Device Settings

[*¥)

Lab 1.4 - Basic Network Connectivity

- Build a Cluster

I

]
)
[¥}

Lab 1.6 - Build a Basic LTM Config

7 - REST APl Transactions #

L4 AT

I
B
5

B T o .

32

http://10.1.20.129

2. Click the ‘Step 1: Create a Transaction’ item. Examine the URL and JSON body. We will send a
POST to the /mgmt/tm/transaction worker with an empty JSON body to create a new transaction.

. » Step 1: Create a Transaction
POST hteps:// /mgmt/tm/transaction Params

@ Body ®

form-data x-www-form-urlencoded ® raw binary
i-k
2}

3. Click the ‘Send’ button to send the request. Examine the response and find the ‘transld’ attribute.

Body (26)
Pretty JSON =
1-|{
2 "transId": 1468360639660132, *
3 "state": "STARTED",
4 "timeoutSeconds": 120,
5 "asyncExecution": false,
6 "validateOnly": false,
7 "executionTimeout": 300,
8 "executionTime": 0,
9 "failureReason": "",
10 "kind": "tm:transactionstate",
11 "selfLink": "https://localhost/mgmt/tm/transaction/1468360639660132?ver=12.0.0"
12 [}

4. Save the value of this attribute in the bigip_transaction_id environment variable. Additionally
notice that there are timeouts for both the submission of the transaction and how long it should take
to execute. Be aware that after the ‘timeoutSeconds’ value, this transld will be silently removed:

33

MANAGE ENVIRONMENTS X

Manage Environments

Edit Environment

INTRO - Automation & Orchestration Lab

Key Value Bulk Edit
bigip_a_mgmt 10.1.1.4
bigip_b_mgmt 10.,1.1.5
iwf_mgmt 10.1.1.6

bigip_a_auth_token

bigip_b_auth_token

bigip_transaction_id *— *

iwf_auth_token

(IR < <<

5. Click the ‘Step 2: Add to Transaction: Create a HTTP Monitor’ item in the Postman collection. This
request is the same as a non-transaction enabled request in terms of the request type (POST), URI
and JSON body. The difference is we add a X-F5-REST-Coordination—Id header with a value of
the transId attribute to add it to the transaction:

Step 2: Add To Transaction: Create a HTTP Monitor

POST https.// /mgmtitmsitm/maonitor/http Params
Headers (3) []
Key Value
Content-Type application/json

X-F5-REST-Coordination-1d *—' —

X-F5-Auth-Token

6. Click the ‘Send’ button and examine the response
7. Examine and click ‘Send’ on Steps 3-6 in the collection

8. Click ‘Step 7: View the Transaction queue’. Examine the request type and URI and click ‘Send’. This
request allows you to see the current list of commands (ordered) that are in the transaction.

Task 2 — Modify a Transaction

1. Click the ‘Step 8: View queued command 4 from Transaction’ item in the collection. Examine the
request type and URI. We will GET the queued command number 4 from the transaction list.

34

b Step 8: View queued command 4 from Transaction

GET https:// fmgmu/tm/transaction/ Jfcommands/4 Params
Authorization (2)
Type No Auth
Body 21 Status: 200 (
Pretty JSON =
1~
2 "method”: "POST",
3 "uri": "https://localhost/mgmt/tm/1tm/profilestcp”,
4~ body": {
5 "name™: "Labl.7_tcp_clientside”,
(5] "nagle": "disabled”,
7 "sendBufferSize”: "1l600@"
B }l
9 "evalOrder": 4, *—
18 "commandId”: 4,
11 "kind": "tm:transaction:commandsstate”,
12 "selflink": "https://localhost/mgmt/tm/transaction/1494358032450450/ commands/47ver=12.1.1"
13 }

2. Click the ‘Step 9: Change Eval Order 4 ->1’ item in the collection.

Examine the request

type, URI and JSON body. We will PATCH our transaction resource and change the value of
the ‘evalOrder’ attribute, from 4 to 1, to move at the first position of the transaction queue:

35

b Step 9: Change Eval Order 4 =1

PATCH hittps.// Smgmtftmitransaction/ fcommands/4 Params
Authorizath (2) ®
Type Mo Auth
Body 21 Status: 200 C
Pretty JSON =
1- 4
2 "method™: "POST",
3 "uri": "https://localhost/mgmt/tm/tm/profile/tcp”,
4= "body": {
5 "name”: "Labl.7_tcp_clientside”,
6 "nagle": "disabled”,
7 "sendBufferSize”: "16008"
8 b
9 "evalOrder”: 1,*—
18 "commandId”: 4,
11 "kind": "tm:transaction:commandsstate”,
12 "selfLink": "https://localhost/mgmt/tm/ transaction/1494358032450458/ commands/47ver=12.1.1"
13 %

3. Click the ‘Step 10: View the Transaction queue changes’ item in the collection. Examine that the
transaction number 4 has moved into position 1 and all other transactions eval order has moved

accordingly.

Task 3 — Commit a Transaction

1. Click the ‘Step 11: Commit the Transaction’ item in the collection. Examine the request type, URI and
JSON body. We will PATCH our transaction resource and change the value of the ‘state’ attribute to

submit the transaction:

» Step 11: Commit the Transaction ”

PATCH https:/f fmgmt/tm/transaction
\ (2) Body @
form-data ¥-www-form-urlencoded ® raw binary |SON (application/json)
1~ {
2 "state":"VALIDATING" *—
3 }

2. Click the ‘Send’ button and examine the response.

3. Verify the config was created using TMUI or REST requests.

Params

36

Warning: When sending the Header X-F5-REST-Coordination-Id, the system assumes you want
to add an entry in the transaction queue. You MUST remove this header if you want to issue transaction
queue changes (like deleting an entry from the queue, changing the order, commiting a transaction). If
you don’t remove the header in that specific case, the system will send a 400 with the following type of

error: “message”: “Transaction XXXXX operation is not allowed to be added to transaction.”

5.2 Module 2: iWorkflow

In this module we will explore how to use F5’s iWorkflow platform to further abstract application services
and deliver those services to tenants. iWorkflow has two main purposes in the Automation & Orchestration
toolchain:

* Provide simplified but customizable Device Onboarding workflows
* Provide a tenant/provider interface for L4 — L7 service delivery

When moving to an iWorkflow based toolchain it’s important to understand that L1-3 Automation (Device
Onboarding, Networking, etc) and L4-7 (Deployment of Virtual Servers, Pools, etc) are separated and
delivered by different features.

L1-3 Networking and Device Onboarding are delivered by ‘Cloud Connectors’ that are specific to the third
party technology ecosystem (e.g. vVCMP, Cisco APIC, VMware NSX, BIG-IP, etc).

L4-7 service delivery is accomplished by:
* Declarative: Consuming F5 iApp templates from BIG-IP devices and creating a Service Catalog.
* Imperative: Consuming the iWorkflow REST Proxy to drive API calls to BIG-IP devices

The labs in the module will focus on the high level features in place to achieve full L1-7 automation. As
mentioned above, iApps are a key component of this toolchain. For our purposes we will use the f5.http
iApp to create simple examples. For more advanced use cases it's often required to use a ‘Declarative’ or
‘Deployment-centric’ iApp template. A supported template of this nature called the App Services Integration
iApp is available at https://github.com/F5Networks/f5-application-services-integration-iApp for this purpose.

5.2.1 Lab 2.1: iWorkflow Authentication

iWorkflow supports the same authentication mechanisms as BIG-IP (HTTP BASIC, Token Based Auth). In
this lab we will quickly review TBA on iWorkflow.

Task 1 — Token Based Authentication
In this task we will demonstrate TBA using the local authentication database, however, authentication to
external providers is fully supported.

For more information about external authentication providers see the section titled “About external au-
thentication providers with iControl REST” in the iControl REST API User Guide available at https:
//devcentral.f5.com

Perform the following steps to complete this task:

1. Click the ‘Step 1: Get Authentication Token’ item in the Lab 2.1 Postman Collection

37

https://github.com/F5Networks/f5-application-services-integration-iApp
https://devcentral.f5.com
https://devcentral.f5.com

5. Examine the response status code.

Notice that we are sending a POST request to the /mgmt /shared/authn/login endpoint.

» Step 1: Get Authentication Token

Imgmt/shared/authn/login

. L0

Key Value

POST https://

Headers (1)

Content-Type application/json

Click the ‘Body’ tab and examine the JSON that we will send to iWorkflow to provide credentials:

Modify the JSON body and add the required credentials (admin/admin). Then click the ‘Send’ button.

response will have a 200 OK status code. If the status code is 401 then check your credentials:

Successful:
Body (22
Pretty =)
. ik :Esernfrre_": "adllin"',
Unsuccessful:
Body (15)
Pretty HTML 5
Bl 1 |<?xml version="1.8" encoding="IS0-8859-1"2»
L] 2 |[<!DOCTYPE html PUBLIC "-

//W3C//DTD XHTML 1.@ Strict//EN"

Save Response

* Status: 401 F5 Authorization

Required

If authentication succeeded and a token was generated the

Save Response

. Once you receive a 200 OK status code examine the response body. The various attributes show the

parameters assigned to the particular token. Find the ‘token’ attribute and copy it into your clipboard

(Ctrl+c) for use in the next step:

38

Body (12)

Pretty JSON

"username": "admin",
3 "loginReference”: {
4 "link": "https://localhost/mgmt/cm/system/authn/providers/local/login”

s

4

"loginProviderName": "local”,

7 "token": {
8 "token": "PXS5Z4NE2KDYTIGGRBOAYYAUJI41™,

"name"”: "PXSZ4NEZKDYTIGGRBOAYYAUJ4I™,

4

10 "userName": "admin",

11 "authProviderName": "local",

12 ~ "user": {

13 "1link": "https://localhost/mgmt/shared/authz/users/admin”
14 Is

15 "groupReferences": [],

16 "timeout": 1200,

7. Click the ‘Step 2: Verify Authentication Works’ item in the Lab 2.1 Postman collection. Click the
‘Headers’ tab and paste the token value copied above as the VALUE for the x-F5-Auth-Token
header. This header is required to be sent on all requests when using token based authentication.

Headers (2) k

Key Value

Content-Type application/json

X-F5-Auth-Token —* C25CKSFQAICJQGKUJONCLMWTEW

8. Click the ‘Send’ button. If your request is successful you should see a ‘200 OK’ status and a listing of
the ‘Itm’ Organizing Collection.

9. We will now update your Postman environment to use this auth token for the remainder of the lab.
Click the Environment menu in the top right of the Postman window and click ‘Manage Environments’:

€ @ sgnin B & @
INTRO - Automation & Orches o]
—==gp Manzge Environments

Shared Environments

Params Save

10. Click the ‘INTRO — Automation & Orchestration Lab’ item:

MANAGE ENVIRONMENTS

Manage Environments

INTRO - Automation & Orchestration Lab K m — i

11. Update the value for ‘iwf_auth_token’ by Pasting (Ctrl-v) in your auth token:

39

12.

13.

MANAGE ENVIRONMENTS X

Manage Environments

Edit Environment

INTRO - Automation & Orchestration Lab

Key Value

bigip_a_mgmt 10.1.1.4

bigip_b_mgmt 10.1.1.5

iwf_mgmt 10.1.1.6

bigip_a_auth_token QIXKEHQWZFW35VC3JRZOXWNNDQ
bigip_b_auth_token

on_id [

iwf_auth_token

tran:

iwf_pool_uuid

<< NN << <<

iwf_bigip_a_uuid

Click the ‘Update’ button and then close the ‘Manage Environments’ window. Your subsequent re-
quests will now automatically include the token.

Click the ‘Step 3: Set Authentication Token Timeout’ item in the Lab 1.2 Postman collection. This
request will PATCH your token Resource (check the URI) and update the timeout attribute so we can
complete the lab easily. Examine the request type and JSON Body and then click the ‘Send’ button.
Verify that the timeout has been changed to ‘36000’ in the response:

» Step 3: Set Authentication Token Timeout

PATCH https:// /mgmt/shared/authz/tokens/ Params

2 Body ® \

form-data x-www-form-urlencoded

5.2.2 Lab 2.2: Discover BIG-IP Devices

In order for iWorkflow to interact with a BIG-IP device it must be discovered by iWorkflow. The device
discovery process leverages the existing CMI Device Trust infrastructure on BIG-IP. Currently there is a
limitation that a single BIG-IP device can only be ‘discovered’ by ONE of iWorkflow or BIG-IQ CM at a time.
In this lab will we discover the existing BIG-IP devices from your lab environment.

Task 1 — Discover BIG-IP Devices

Perform the following steps to complete this task:

1.

Expand the “Lab 2.2: Discover & License BIG-IP Devices” folder in the Postman collection

2. Open a Google Chrome window/tab to your iWorkflow device (https://10.1.1.6) and login with default

credentials (admin/admin). You can use this window to monitor actions while they are being performed
in Postman. Find the ‘Devices’ pane and make if viewable if it isn’t already.

3. Click the “Step 1: Discover BIGIP-A Device” item in the Postman collection. This

will request will perform a POST to the /mgmt/shared/resolver/device—-groups/

40

https://10.1.1.6

cm-cloud-managed—-devices/devices worker to perform the device discovery process. Examine
the JSON body so you understand what data is sent to perform the discovery process:

» Step 1: Discover BIGIP-A Device

POST

https:// /mgmt/shared/resolver/device-groups/cm-cloud-managed-devices/devices

\ @ Boye . : \

form-data

x-www-form-urlencoded '® raw binary JSON (application/json)

callyUpdateFramework":true,
es™: {

sSoapProxyEnabled":true,
"isTmshProxyEnabled” 1se,
"dmaConfigPathScope":"basic"

I
"rootUser™:"root”,
"userName": "admin",

"password": "admin"

4. Click the ‘Send’ button. Examine the response and monitor the iWorkflow Chrome window you opened

previously.
Body (12)

Pretty JSON

1~

2 "yuid": "891a87fb-b592-4fea-zedf-f1598836027C",
3 "deviceUri": "https://19.1.1.4:443",

4 "machineId": "891a87fb-p592-4fea-aedf-f1590836027c",
5 "state": "PENDIHG",‘—

6 "address": "18.1.1.4",

7 "httpsPort": 443,

8~ "properties”: {

9 "isRestProxyEnabled”: true,

18 "isSoapProxyEnabled”: true,

11 "isTmshProxyEnabled”: false,

12 "dmaConfigPathScope”: "basic"

13 s

14 "automaticallyUpdateFramework™: true,

15 "grouphlame”: "cm-cloud-managed-devices",

16 "rootUser": "root",

17 "generation”: 18,

5. Copy the ‘uuid’ attribute for BIGIP-A and populate the ‘iwf_bigip_a_uuid’ Postman

able with the value:

environment vari-

41

MANAGE ENVIRONMENTS X

Manage Environments

Edit Environment

Body (11) INTRO - Automation & Orchestration Lab
Pretty JSON =
Key Value

5 435d7b1d", *— bigip_a_mgmt 10.1.1.4

4 -fefb435a7b1d", bigip_b_mgmt 10.1.1.5

6 wf_mgmt 10.1.1.6

v bigip_a_auth_token QIXKEHQWZFW RZOXWNNDQ

10 "isSoapProxyEnabled bigip_b_auth_token

1 "isTmshProxyEnabled”: S

j; b dmaConfigPathScope®: transaction_id 14911

14 "automaticallyUpdateFramework”: true, JE v %

15 oud-managed-devices”, wf_auth_tok CXJVAOBEJZII3UJAHISIMYD773

16

17 s wf_pool_uuid

18 : 1491161906297581,

19 ver:device-groups:restdes wf_bigip_a_uuid 253991f9-a0de-4cd5-a342-fefb435d7b1d
20 ://localhost/mgmt/shared/res

21} wf_connector_uuid

6. Click the “Step 2: Discover BIGIP-B Device” item in the collection.

7. Click the “Step 3: Get Discovered Devices” item in the collection. We will GET the devices collection
and verify that both BIG-IP devices show a ‘state’ of ‘ACTIVE’:

Body (11) Status: 200

mon/bigipl”,
5dd62c-b92f-4b18-8c1dPa65904a6233",

5.2.3 Lab 2.3: Create Tenant & BIG-IP Connector

iWorkflow implements a Tenant/Provider interface to enable abstracted deployment of L4-7 into various en-
vironment. In conjuction iWorkflow Connectors serve as the L1-3 Network and Device Onboarding automa-
tion component in the automation toolchain. iWorkflow supports Connectors for various vendor integrations
(F5 vCMP, F5 BIG-IP, Cisco APIC, vmWare NSX, etc.) In this lab we will create a ‘BIG-IP Connector’ for
the BIG-IP devices in the lab deployment. This connector will then allow you to drive a fully automated
deployment from the iWorkflow Service Catalog.

Task 1 — Create a Tenant and Tenant User

In this task we will create a Local Connector that is linked to our BIG-IP devices. The Local Cloud Con-
nector is DSC aware and will automatically detect that the BIG-IP devices are clustered and configure itself
accordingly.

Perform the following steps to complete this task:

1. Expand the “Lab 2.3 — Create Tenant & Local Connector” folder in the Postman collection.

42

2. Click the “Step 1: Create iWorkflow Tenant” item in the collection and click ‘Send’. This request will
create a tenant named MyTenant.

3. Click the “Step 2: Create Tenant User” item in the collection and click ‘Send’. This request will create
a tenant user.

4. Click the “Step 3: Assign User to Tenant Admin Role” item in the collection and click ‘Send’. This
request will assign the Admin role for the MyTenant tenant to the tenant user.

Task 2 - Create a Local Connector

1. Click the “Step 4: Create a Local Connector” item in the collection. We will create a new connector by
performing a POST to the local connector collection. If you examine the JSON body you can see we
are providing a reference to the URL for the BIG-IP-A device (using the UUID environment variable
we populated earlier):

» Step 1: Create a Local Connector

POST https:// /mgmt/cm/cloud/connectors/local \ Params Send Vv

2 Body @

or for the BIG-IP A/B Cluster”,

device-groups/cm-cloud-managed-devices/de es/{{iwf_bigip_a_uuid}}"}

ost/mgmt/shared/res

2. Click the ‘Send’ button to create the connector.

3. Click the “Step 5: Get Local Connectors” item in the collection and click ‘Send’. Examine the output
to see how the connector was configured. Take note of the reference to the ‘device-group’. This is
how the connector determines the HA state of the underlying BIG-IP devices. Find the ‘connectorld’
of the connector and update your Postman environment to include the ‘connectorld’ as the value of
the ‘iwf_connector_uuid’ variable:

Body (11)

Pretty JSON

- | {

2~ "items": [

e {
- "ownerMachineId": "96bd241f-a4f7-4516-9970-3f70e99776d5",
S~ "cloudConnectorReference™: {
6 "link": "https://localhost/mgmt/cm/cloud/connectors/local”
fa
"displayName”: "BIG-IP",
: "connectorId”: "dc63aac4~e15e~4666-a3d6-6403132e89cb|',
1@ "name": "BIG-IP A&B Connector”,
11 " ription®: "Local Connector for the BIG-IP A/B Cluster”,
12 ~ ceGroupReference": {
13 "+ "https://localhost/mgmt/shared/re ver/device-groups/connector-dcé3aacd-elSe-4€
14 Ts
15 ~ "deviceReferences": [
16 ~ {
17 "link": "https://localhost/mgmt/shared/resolver/device-groups/cm-cloud-managed-devices
1 1
1 1,

43

MANAGE ENVIRONMENTS X

Manage Environments

Edit Environment

INTRO - Automation & Orchestration Lab

bigip_a_mgmt 10.1.1.4

bigip_b_mgmt 10.1.1.5

wi_bigip_a_uuid / \aB)1f9-a0de-4cd5-a342-fefb435d7b1d

wf_connector_uuid 826706b-37ef-43f1-84bd-f51cd48175ad|

< B<E<E<B<B<H<J<J<]

4. Click the “Step 6: Assign Connector to Tenant” item in the collection. This request will assign this
connector to to the ‘MyTenant’ tenant allowing service deployments from that tenant. Click the ‘Send’
button and examine the response.

5.2.4 Lab 2.4: Deploy L4-7 Services

To drive iApp automation-based L4-7 deployments, iWorkflow includes the capability to create a Tenant
Service Catalog via L4 — L7 Service Templates. This model of deployment enables Declarative automation
of F5 L4-7 services provided the underlying iApp templates are designed with a declarative presentation
layer in mind. To demonstrate this capability we will create a simple Service Catalog Template and deploy
an application from a tenant on our BIG-IP devices using the App Services iApp.

Task 1 - Install the App Services iApp on iWorkflow

iWorkflow serves as the Source-of-Truth for iApp templates. As a result iApp templates that will be used
to automate deployments on BIG-IP must be installed on iWorkflow first. Once installed, iWorkflow will
automatically determine when a template needs to be installed on BIG-IP and perform the needed actions.

Note: iApp template installation on BIG-IP devices occurs during the first service deployment to a device.

To assist in deployment of the App Services iApp template and its associated sample service templates a
Postman collection has been created. We will first import the collection into Postman and then use it to
install the template into iWorkflow.

Perform the following steps to complete this task:
1. Import the following collection URL using ‘Import’ -> ‘Import from Link’:

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/
postman_collections/AppSvcs_1iApp_Workflows.postman_collection. json

2. Expand the AppSvcs_iApp_Workflows collection. Then open the 2_Install_on_iWorkflow
folder and click the Install AppSvcs Template on iWorkflow item.

44

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/AppSvcs_iApp_Workflows.postman_collection.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/master/postman_collections/AppSvcs_iApp_Workflows.postman_collection.json

3. You can examine the Body of this request,